dimod.QuadraticModel.reduce_linear#
- QuadraticModel.reduce_linear(function: Callable, initializer: float | floating | integer | None = None) Any [source]#
Apply function of two arguments cumulatively to the linear biases.
- Parameters:
function – Function of two arguments to apply to the linear biases.
initializer – Prefixed in the calculation to the iterable containing the linear biases or used as the default if no linear biases are set in the quadratic model.
- Returns:
Result of applying the specified function to the linear biases.
Examples
>>> from operator import add >>> from dimod import QuadraticModel >>> qm = QuadraticModel({'x': 0.5, 's': 1, 'i': 2}, ... {('x', 'i'): 2}, 0.0, ... {'x': 'BINARY', 's': 'SPIN', 'i': 'INTEGER'}) >>> qm.reduce_linear(add) 3.5
For information on the related functional programming method see
functools.reduce()
.