dimod.ConstrainedQuadraticModel.violations#
- ConstrainedQuadraticModel.violations(sample_like: Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | tuple[Sequence[float | floating | integer], Sequence[Hashable]] | tuple[ndarray, Sequence[Hashable]] | ndarray | Sequence[Sequence[float | floating | integer]] | tuple[Sequence[Sequence[float | floating | integer]], Sequence[Hashable]] | Sequence[Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | tuple[Sequence[float | floating | integer], Sequence[Hashable]] | tuple[ndarray, Sequence[Hashable]] | ndarray] | Iterator[Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | tuple[Sequence[float | floating | integer], Sequence[Hashable]] | tuple[ndarray, Sequence[Hashable]] | ndarray], *, skip_satisfied: bool = False, clip: bool = False) dict[Hashable, float | floating | integer] [source]#
Return a dict of violations for all constraints.
The dictionary maps constraint labels to the amount each constraint is violated. This method is a shortcut for
dict(cqm.iter_violations(sample))
.- Parameters:
sample_like – A sample. sample-like is an extension of NumPy’s array_like structure. See
as_samples()
..skip_satisfied – If True, does not yield constraints that are satisfied.
clip – If True, negative violations are rounded up to 0.
- Returns:
A dict of 2-tuples containing the constraint label and the amount of the constraint’s violation.
Examples
This example meets one constraint exactly, is well within the requirement of a second, and violates a third.
>>> i, j, k = dimod.Binaries(['i', 'j', 'k']) >>> cqm = dimod.ConstrainedQuadraticModel() >>> cqm.add_constraint(i + j + k == 10, label='equal') 'equal' >>> cqm.add_constraint(i + j <= 15, label='less equal') 'less equal' >>> cqm.add_constraint(j - k >= 0, label='greater equal') 'greater equal' >>> sample = {"i": 3, "j": 2, "k": 5} >>> cqm.violations(sample) {'equal': 0.0, 'less equal': -10.0, 'greater equal': 3.0}