dimod.ConstrainedQuadraticModel.check_feasible#
- ConstrainedQuadraticModel.check_feasible(sample_like: Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | tuple[Sequence[float | floating | integer], Sequence[Hashable]] | tuple[ndarray, Sequence[Hashable]] | ndarray | Sequence[Sequence[float | floating | integer]] | tuple[Sequence[Sequence[float | floating | integer]], Sequence[Hashable]] | Sequence[Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | tuple[Sequence[float | floating | integer], Sequence[Hashable]] | tuple[ndarray, Sequence[Hashable]] | ndarray] | Iterator[Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | tuple[Sequence[float | floating | integer], Sequence[Hashable]] | tuple[ndarray, Sequence[Hashable]] | ndarray], rtol: float = 1e-06, atol: float = 1e-08) bool [source]#
Return the feasibility of the given sample.
A sample is feasible if all constraints are satisfied. A constraint’s satisfaction is tested using the following equation:
\[violation <= (atol + rtol * | rhs\_energy | )\]where
violation
andrhs_energy
are as returned byiter_constraint_data()
.- Parameters:
sample_like – A sample. sample-like is an extension of NumPy’s array_like structure. See
as_samples()
.rtol – Relative tolerance.
atol – Absolute tolerance.
- Returns:
True if the sample is feasible (given the tolerances).
Examples
This example violates a constraint that \(i \le 4\) by 0.2, which is greater than the absolute tolerance set by
atol = 0.1
but within the relative tolerance of \(0.1 * 4 = 0.4\).>>> cqm = dimod.ConstrainedQuadraticModel() >>> i = dimod.Integer("i") >>> cqm.add_constraint_from_comparison(i <= 4, label="Max i") 'Max i' >>> cqm.check_feasible({"i": 4.2}, atol=0.1) False >>> next(cqm.iter_constraint_data({"i": 4.2})).rhs_energy 4.0 >>> cqm.check_feasible({"i": 4.2}, rtol=0.1) True
Note that the
next()
function is used here because the model has just a single constraint.