dimod.SampleSet.from_samples_cqm#
- classmethod SampleSet.from_samples_cqm(samples_like, cqm, rtol=1e-06, atol=1e-08, **kwargs)[source]#
Build a sample set from raw samples and a constrained quadratic model.
The constrained quadratic model is used to calculate energies and feasibility.
- Parameters:
samples_like – A collection of raw samples. ‘samples_like’ is an extension of NumPy’s array_like. See
as_samples()
.cqm (
ConstrainedQuadraticModel
) – A constrained quadratic model.rtol (float, optional, default=1e-6) – Relative tolerance for constraint violation. See
ConstrainedQuadraticModel.check_feasible()
for more information.atol (float, optional, default=1e-8) – Absolute tolerance for constraint violations. See
ConstrainedQuadraticModel.check_feasible()
for more information.info (dict, optional) – Information about the
SampleSet
as a whole formatted as a dict.num_occurrences (array_like, optional) – Number of occurrences for each sample. If not provided, defaults to a vector of 1s.
aggregate_samples (bool, optional, default=False) – If True, all samples in returned
SampleSet
are unique, with num_occurrences accounting for any duplicate samples in samples_like.sort_labels (bool, optional, default=True) – Return
SampleSet.variables
in sorted order. For mixed (unsortable) types, the given order is maintained.**vectors (array_like) – Other per-sample data.
- Returns:
Examples
>>> cqm = dimod.ConstrainedQuadraticModel() >>> x, y, z = dimod.Binaries(['x', 'y', 'z']) >>> cqm.set_objective(x*y + 2*y*z) >>> label = cqm.add_constraint(x*y == 1, label='constraint_1') >>> sampleset = dimod.SampleSet.from_samples_cqm({'x': 0, 'y': 1, 'z': 1}, cqm)