classmethod SampleSet.from_samples_bqm(samples_like, bqm, **kwargs)[source]#

Build a sample set from raw samples and a binary quadratic model.

The binary quadratic model is used to calculate energies and set the vartype.

  • samples_like – A collection of raw samples. ‘samples_like’ is an extension of NumPy’s array_like. See as_samples().

  • bqm (BinaryQuadraticModel) – A binary quadratic model.

  • info (dict, optional) – Information about the SampleSet as a whole formatted as a dict.

  • num_occurrences (array_like, optional) – Number of occurrences for each sample. If not provided, defaults to a vector of 1s.

  • aggregate_samples (bool, optional, default=False) – If True, all samples in returned SampleSet are unique, with num_occurrences accounting for any duplicate samples in samples_like.

  • sort_labels (bool, optional, default=True) – Return SampleSet.variables in sorted order. For mixed (unsortable) types, the given order is maintained.

  • **vectors (array_like) – Other per-sample data.




>>> bqm = dimod.BinaryQuadraticModel.from_ising({}, {('a', 'b'): -1})
>>> sampleset = dimod.SampleSet.from_samples_bqm({'a': -1, 'b': 1}, bqm)