dimod.generators.xor_gate#
- xor_gate(in0: Hashable, in1: Hashable, out: Hashable, aux: Hashable, *, strength: float = 1.0) BinaryQuadraticModel [source]#
Generate a binary quadratic model with ground states corresponding to an XOR gate.
Note that it is not possible to construct a binary quadratic model with only three variables for an XOR gate.
- Parameters:
in0 – Variable label for one of the inputs.
in1 – Variable label for one of the inputs.
out – Variable label for the output.
aux – Variable label for an auxiliary variable.
strength – Energy of the lowest-energy infeasible state.
- Returns:
A binary quadratic model with ground states corresponding to an XOR gate. The model has four variables and six interactions.
Examples
>>> bqm = dimod.generators.xor_gate('x1', 'x2', 'z', 'a') >>> print(dimod.ExactSolver().sample(bqm).lowest()) a x1 x2 z energy num_oc. 0 0 0 0 0 0.0 1 1 0 0 1 1 0.0 1 2 0 1 0 1 0.0 1 3 1 1 1 0 0.0 1 ['BINARY', 4 rows, 4 samples, 4 variables]