dimod.generators.maximum_independent_set#
- maximum_independent_set(edges: Iterable[Tuple[Hashable, Hashable]], nodes: Iterable[Hashable] | None = None, *, strength: float = 2) BinaryQuadraticModel [source]#
Generate a binary quadratic model encoding a maximum independent set problem.
Given a graph G, an independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A maximum independent set is the independent set with the most nodes.
- Parameters:
edges – Edges of the graph.
nodes – Nodes of the graph.
strength – Strength of the quadratic biases. Must be strictly greater than 1 to enforce the independent set constraint.
- Returns:
A binary quadratic model (BQM) with variables and interactions corresponding to
nodes
andedges
.
Examples
Generate a maximum independent set BQM from a list of edges.
>>> dimod.generators.maximum_independent_set([(0, 1), (1, 2)]) BinaryQuadraticModel({0: -1.0, 1: -1.0, 2: -1.0}, {(1, 0): 2.0, (2, 1): 2.0}, 0.0, 'BINARY')
Generate a maximum independent set BQM from a list of edges and nodes.
>>> dimod.generators.maximum_independent_set([(0, 1)], [0, 1, 2]) BinaryQuadraticModel({0: -1.0, 1: -1.0, 2: -1.0}, {(1, 0): 2.0}, 0.0, 'BINARY')
Generate a maximum independent set BQM from a
networkx.Graph
.>>> import networkx as nx >>> G = nx.complete_graph(2) >>> dimod.generators.maximum_independent_set(G.edges, G.nodes) BinaryQuadraticModel({0: -1.0, 1: -1.0}, {(1, 0): 2.0}, 0.0, 'BINARY')