dimod.generators.combinations#
- combinations(n: int | Collection[Hashable], k: int, strength: float = 1, vartype: Vartype | str | frozenset = Vartype.BINARY) BinaryQuadraticModel [source]#
Generate a binary quadratic model that is minimized when
k
ofn
variables are selected.More fully, generates a binary quadratic model (BQM) that is minimized for each of the
k
-combinations of its variables.The energy for the BQM is given by \((\sum_{i} x_i - k)^2\).
- Parameters:
n – Variable labels. If
n
is an integer, variables are labelled [0, n).k – The number of selected variables (variables assigned value 1) that minimizes the generated BQM, resulting in an energy of 0.
strength – Energy of the first excited state of the BQM. The first excited state occurs when the number of selected variables is \(k \pm 1\).
vartype –
Variable type for the BQM. Accepted input values:
Vartype.SPIN
,'SPIN'
,{-1, 1}
Vartype.BINARY
,'BINARY'
,{0, 1}
- Returns:
A binary quadratic model.
Examples
>>> bqm = dimod.generators.combinations(['a', 'b', 'c'], 2) >>> bqm.energy({'a': 1, 'b': 0, 'c': 1}) 0.0 >>> bqm.energy({'a': 1, 'b': 1, 'c': 1}) 1.0
>>> bqm = dimod.generators.combinations(5, 1) >>> bqm.energy({0: 0, 1: 0, 2: 1, 3: 0, 4: 0}) 0.0 >>> bqm.energy({0: 0, 1: 0, 2: 1, 3: 1, 4: 0}) 1.0
>>> bqm = dimod.generators.combinations(['a', 'b', 'c'], 2, strength=3.0) >>> bqm.energy({'a': 1, 'b': 0, 'c': 1}) 0.0 >>> bqm.energy({'a': 1, 'b': 1, 'c': 1}) 3.0