dwave.embedding.unembed_sampleset¶
- unembed_sampleset(target_sampleset, embedding, source_bqm, chain_break_method=None, chain_break_fraction=False, return_embedding=False)[source]¶
Unembed a sample set.
Given samples from a target binary quadratic model (BQM), construct a sample set for a source BQM by unembedding.
- Parameters
target_sampleset (
dimod.SampleSet
) – Sample set from the target BQM.embedding (dict) – Mapping from source graph to target graph as a dict of form {s: {t, …}, …}, where s is a source variable and t is a target variable.
source_bqm (
BinaryQuadraticModel
) – Source BQM.chain_break_method (function/list, optional) – Method or methods used to resolve chain breaks. If multiple methods are given, the results are concatenated and a new field called “chain_break_method” specifying the index of the method is appended to the sample set. Defaults to
majority_vote()
. Seedwave.embedding.chain_breaks
.chain_break_fraction (bool, optional, default=False) – Add a chain_break_fraction field to the unembedded
dimod.SampleSet
with the fraction of chains broken before unembedding.return_embedding (bool, optional, default=False) – If True, the embedding is added to
dimod.SampleSet.info
of the returned sample set. Note that if an embedding key already exists in the sample set then it is overwritten.
- Returns
Sample set in the source BQM.
- Return type
SampleSet
Examples
This example unembeds from a square target graph samples of a triangular source BQM.
>>> # Triangular binary quadratic model and an embedding >>> J = {('a', 'b'): -1, ('b', 'c'): -1, ('a', 'c'): -1} >>> bqm = dimod.BinaryQuadraticModel.from_ising({}, J) >>> embedding = {'a': [0, 1], 'b': [2], 'c': [3]} >>> # Samples from the embedded binary quadratic model >>> samples = [{0: -1, 1: -1, 2: -1, 3: -1}, # [0, 1] is unbroken ... {0: -1, 1: +1, 2: +1, 3: +1}] # [0, 1] is broken >>> energies = [-3, 1] >>> embedded = dimod.SampleSet.from_samples(samples, dimod.SPIN, energies) >>> # Unembed >>> samples = dwave.embedding.unembed_sampleset(embedded, embedding, bqm) >>> samples.record.sample array([[-1, -1, -1], [ 1, 1, 1]], dtype=int8)