dimod.Initialized.parse_initial_states#
- Initialized.parse_initial_states(bqm: BinaryQuadraticModel, initial_states: Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | Tuple[Sequence[float | floating | integer], Sequence[Hashable]] | Tuple[ndarray, Sequence[Hashable]] | ndarray | Sequence[Sequence[float | floating | integer]] | Tuple[Sequence[Sequence[float | floating | integer]], Sequence[Hashable]] | Sequence[Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | Tuple[Sequence[float | floating | integer], Sequence[Hashable]] | Tuple[ndarray, Sequence[Hashable]] | ndarray] | Iterator[Sequence[float | floating | integer] | Mapping[Hashable, float | floating | integer] | Tuple[Sequence[float | floating | integer], Sequence[Hashable]] | Tuple[ndarray, Sequence[Hashable]] | ndarray] | None = None, initial_states_generator: Literal['none', 'tile', 'random'] = 'random', num_reads: int | None = None, seed: int | None = None, copy_always: bool = False) ParsedInputs [source]#
Parse or generate initial states for an initialized sampler.
- Parameters:
bqm – Binary quadratic model.
initial_states (samples-like) – One or more samples, each defining an initial state for all the problem variables. Initial states are given one per read, but if fewer than
num_reads
initial states are defined, additional values are generated as specified byinitial_states_generator
. See func:dimod.as_samples for a description of “samples-like”.initial_states_generator –
Defines the expansion of
initial_states
if fewer thannum_reads
are specified:- ”none”:
If the number of initial states specified is smaller than
num_reads
, raises ValueError.
- ”tile”:
Reuses the specified initial states if fewer than
num_reads
or truncates if greater.
- ”random”:
Expands the specified initial states with randomly generated states if fewer than
num_reads
or truncates if greater.
num_reads – Number of reads. Defaults to the number of initial states, if
initial_states
is specified, or to 1, if not.seed – 32-bit unsigned integer seed to use for the PRNG. Specifying a particular seed with a constant set of parameters produces identical results. If not provided, a random seed is chosen.
copy_always – If True,
initial_states
is always copied; otherwise it is copied only if necessary.
- Returns:
A named tuple with
['initial_states', 'initial_states_generator', 'num_reads', 'seed']
as generated by this function.