dwave.optimization.mathematical.where#
- where(condition: ArraySymbol, x: ArraySymbol, y: ArraySymbol) Where [source]#
Return elements chosen from x or y depending on condition.
- Parameters:
condition – Where
True
, yieldx
, otherwise yieldy
.x – Values from which to choose. If
x
andy
are dynamically sized thencondition
must be a single value.y – Values from which to choose. If
x
andy
are dynamically sized thencondition
must be a single value.
- Returns:
An
ArraySymbol
with elements fromx
wherecondition
isTrue
, and elements fromy
elsewhere.
Examples
This example uses a single binary variable to choose between two arrays.
>>> from dwave.optimization import Model >>> from dwave.optimization.mathematical import where ... >>> model = Model() >>> condition = model.binary() >>> x = model.constant([1., 2., 3.]) >>> y = model.constant([4., 5., 6.]) >>> a = where(condition, x, y) >>> with model.lock(): ... model.states.resize(1) ... condition.set_state(0, False) ... print(a.state()) [4. 5. 6.]
This example uses a binary array to to select between two arrays.
>>> model = Model() >>> condition = model.binary(3) >>> x = model.constant([1., 2., 3.]) >>> y = model.constant([4., 5., 6.]) >>> a = where(condition, x, y) >>> with model.lock(): ... model.states.resize(1) ... condition.set_state(0, [True, True, False]) ... print(a.state()) [1. 2. 6.]
This example uses a single binary variable to choose between two sets.
>>> model = Model() >>> condition = model.binary() >>> x = model.set(10) # any subset of range(10) >>> y = model.set(10) # any subset of range(10) >>> a = where(condition, x, y) >>> with model.lock(): ... model.states.resize(1) ... condition.set_state(0, True) ... x.set_state(0, [0., 2., 3.]) ... y.set_state(0, [1]) ... print(a.state()) [0. 2. 3.]