Symbols#
Symbols are a model’s decision variables, intermediate variables, constants, and mathematical operations.
See Symbols for an introduction to working with symbols.
Base Classes#
- class Symbol#
Base class for symbols.
Each symbol corresponds to a node in the directed acyclic graph representing the problem.
The following Symbol
methods
are inherited by the ArraySymbol
class and model symbols.
|
Compare whether two nodes are identical. |
|
Return the initialization status of the indexed state. |
Iterate over a node's predecessors in the model. |
|
Iterate over a node's successors in the model. |
|
|
Compare to another node. |
|
Reset the state of a node and any successor symbols. |
|
Determine if two symbols share memory. |
Return an estimated size, in bytes, of the node's state. |
|
Topological index of the node. |
- class ArraySymbol#
Base class for symbols that can be interpreted as an array.
The following ArraySymbol
methods
are inherited by the model symbols.
|
Create an |
|
Return the initialization status of the indexed state. |
|
Create a |
|
Compare to another node. |
|
Create a |
|
Return the number of dimensions for a symbol. |
|
Create a |
|
Create a |
|
Create a |
|
Return the shape of the symbol. |
|
Return the number of elements in the symbol. |
|
Return the state of the node. |
Return an estimated byte-size of the state. |
|
|
Return the stride length, in bytes, for traversing a symbol. |
Model Symbols#
Each operation, decision, constant, mathematical function, and flow control is modeled using a symbol. The following symbols are available for modelling.
In general, symbols should be created using the methods inherited from
Symbol
and ArraySymbol
, rather than by the constructors
of the following classes.
- class Absolute#
Bases:
ArraySymbol
Absolute value element-wise on a symbol.
Examples
This example adds the absolute value of an integer decision variable to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(1, lower_bound=-50, upper_bound=50) >>> i_abs = abs(i) >>> type(i_abs) <class 'dwave.optimization.symbols.Absolute'>
- class Add#
Bases:
ArraySymbol
Addition element-wise of two symbols.
Examples
This example adds two integer symbols.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(10, lower_bound=-50, upper_bound=50) >>> j = model.integer(10, lower_bound=0, upper_bound=10) >>> k = i + j >>> type(k) <class 'dwave.optimization.symbols.Add'>
- class AdvancedIndexing#
Bases:
ArraySymbol
Advanced indexing.
Examples
This example uses advanced indexing to set a symbol’s values.
>>> from dwave.optimization.model import Model >>> model = Model() >>> prices = model.constant([i for i in range(20)]) >>> items = model.set(20) >>> values = prices[items] >>> type(values) <class 'dwave.optimization.symbols.AdvancedIndexing'>
- class All#
Bases:
ArraySymbol
Tests whether all elements evaluate to True.
Examples
This example checks all elements of a binary array.
>>> from dwave.optimization.model import Model >>> model = Model() >>> x = model.binary((20, 30)) >>> all_x = x.all() >>> type(all_x) <class 'dwave.optimization.symbols.All'>
- class And#
Bases:
ArraySymbol
Boolean AND element-wise between two symbols.
Examples
This example creates an AND operation between binary arrays.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import logical_and ... >>> model = Model() >>> x = model.binary(200) >>> y = model.binary(200) >>> z = logical_and(x, y) >>> type(z) <class 'dwave.optimization.symbols.And'>
- class BasicIndexing#
Bases:
ArraySymbol
Basic indexing.
Examples
This example uses basic indexing to set a symbol’s values.
>>> from dwave.optimization.model import Model >>> model = Model() >>> prices = model.constant([i for i in range(20)]) >>> low_prices = prices[:10] >>> type(low_prices) <class 'dwave.optimization.symbols.BasicIndexing'>
- class BinaryVariable#
Bases:
ArraySymbol
Binary decision-variable symbol.
Examples
This example adds a binary variable to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> x = model.binary((20, 30)) >>> type(x) <class 'dwave.optimization.symbols.BinaryVariable'>
- set_state(index, state)#
Set the state of the binary symbol.
The given state must be binary array with the same shape as the symbol.
- Parameters:
index – Index of the state to set
state – Assignment of values for the state.
Examples
This example sets two states for a \(2 \times 3\)-sized binary symbol.
>>> from dwave.optimization.model import Model >>> model = Model() >>> x = model.binary((2, 3)) >>> model.states.resize(2) >>> x.set_state(0, [[True, True, False], [False, True, False]]) >>> x.set_state(1, [[False, True, False], [False, True, False]])
- class Constant#
Bases:
ArraySymbol
Constant symbol.
Examples
This example adds a constant symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> a = model.constant(20) >>> type(a) <class 'dwave.optimization.symbols.Constant'>
- maybe_equals(other)#
Compare to another node.
This method exists because a complete equality test can be expensive.
- Parameters:
other – Another node in the model’s directed acyclic graph.
- Returns: integer
Supported return values are:
0
—Not equal (with certainty)1
—Might be equal (no guarantees); a complete equality test is necessary2
—Are equal (with certainty)
Examples
This example compares
IntegerVariable
symbols of different sizes.>>> from dwave.optimization import Model >>> model = Model() >>> i = model.integer(3, lower_bound=0, upper_bound=20) >>> j = model.integer(3, lower_bound=-10, upper_bound=10) >>> k = model.integer(5, upper_bound=55) >>> i.maybe_equals(j) 1 >>> i.maybe_equals(k) 0
- state(index=0, *, copy=True)#
Return the state of the constant symbol.
- Parameters:
index – Index of the state.
copy – Copy the state. Currently only
True
is supported.
- Returns:
A copy of the state.
- class DisjointBitSet#
Bases:
ArraySymbol
Disjoint-sets successor symbol.
Examples
This example adds a disjoint-sets symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> s = model.disjoint_bit_sets(primary_set_size=100, num_disjoint_sets=5) >>> type(s[1][0]) <class 'dwave.optimization.symbols.DisjointBitSet'>
- set_index()#
Return the index for the set.
- class DisjointBitSets#
Bases:
Symbol
Disjoint-sets decision-variable symbol.
Examples
This example adds a disjoint-sets symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> s = model.disjoint_bit_sets(primary_set_size=100, num_disjoint_sets=5) >>> type(s[0]) <class 'dwave.optimization.symbols.DisjointBitSets'>
- num_disjoint_sets()#
Return the number of disjoint sets in the symbol.
- set_state(index, state)#
Set the state of the disjoint-sets symbol.
The given state must be a partition of
range(primary_set_size)
intonum_disjoint_sets()
partitions, encoded as a 2D \(num_disjoint_sets \times primary_set_size\) Boolean array.- Parameters:
index – Index of the state to set
state – Assignment of values for the state.
- class DisjointList#
Bases:
ArraySymbol
Disjoint-lists successor symbol.
Examples
This example adds a disjoint-lists symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> l = model.disjoint_lists(primary_set_size=10, num_disjoint_lists=2) >>> type(l[1][0]) <class 'dwave.optimization.symbols.DisjointList'>
- list_index()#
Return the index for the list.
- class DisjointLists#
Bases:
Symbol
Disjoint-lists decision-variable symbol.
Examples
This example adds a disjoint-lists symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> l = model.disjoint_lists(primary_set_size=10, num_disjoint_lists=2) >>> type(l[0]) <class 'dwave.optimization.symbols.DisjointLists'>
- num_disjoint_lists()#
Return the number of disjoint lists in the symbol.
- set_state(index, state)#
Set the state of the disjoint-lists symbol.
The given state must be a partition of
range(primary_set_size)
intonum_disjoint_lists()
partitions as a list of lists.- Parameters:
index – Index of the state to set
state – Assignment of values for the state.
- class Equal#
Bases:
ArraySymbol
Equality comparison element-wise between two symbols.
Examples
This example creates an equality operation between integer symbols.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(25, upper_bound=100) >>> j = model.integer(25, lower_bound=-100) >>> k = i == j >>> type(k) <class 'dwave.optimization.symbols.Equal'>
- class IntegerVariable#
Bases:
ArraySymbol
Integer decision-variable symbol.
Examples
This example adds an integer symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(25, upper_bound=100) >>> type(i) <class 'dwave.optimization.symbols.IntegerVariable'>
- lower_bound()#
The lowest value allowed for the integer symbol.
- set_state(index, state)#
Set the state of the integer node.
The given state must be integer array of the integer node shape.
- upper_bound()#
The highest value allowed for the integer symbol.
- class LessEqual#
Bases:
ArraySymbol
Smaller-or-equal comparison element-wise between two symbols.
Examples
This example creates an inequality operation between integer symbols.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(25, upper_bound=100) >>> j = model.integer(25, lower_bound=-100) >>> k = i <= j >>> type(k) <class 'dwave.optimization.symbols.LessEqual'>
- class ListVariable#
Bases:
ArraySymbol
List decision-variable symbol.
Examples
This example adds a list symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> l = model.list(10) >>> type(l) <class 'dwave.optimization.symbols.ListVariable'>
- set_state(index, state)#
Set the state of the list node.
The given state must be a permuation of
range(len(state))
.
- class Max#
Bases:
ArraySymbol
Maximum value in the elements of a symbol.
Examples
This example adds the maximum value of an integer decision variable to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(100, lower_bound=-50, upper_bound=50) >>> i_max = i.max() >>> type(i_max) <class 'dwave.optimization.symbols.Max'>
- class Maximum#
Bases:
ArraySymbol
Maximum values in an element-wise comparison of two symbols.
Examples
This example sets a symbol’s values to the maximum values of two integer decision variables.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import maximum ... >>> model = Model() >>> i = model.integer(100, lower_bound=-50, upper_bound=50) >>> j = model.integer(100, lower_bound=-20, upper_bound=150) >>> k = maximum(i, j) >>> type(k) <class 'dwave.optimization.symbols.Maximum'>
- class Min#
Bases:
ArraySymbol
Minimum value in the elements of a symbol.
Examples
This example adds the minimum value of an integer decision variable to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(100, lower_bound=-50, upper_bound=50) >>> i_min = i.min() >>> type(i_min) <class 'dwave.optimization.symbols.Min'>
- class Minimum#
Bases:
ArraySymbol
Minimum values in an element-wise comparison of two symbols.
Examples
This example sets a symbol’s values to the minimum values of two integer decision variables.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import minimum ... >>> model = Model() >>> i = model.integer(100, lower_bound=-50, upper_bound=50) >>> j = model.integer(100, lower_bound=-20, upper_bound=150) >>> k = minimum(i, j) >>> type(k) <class 'dwave.optimization.symbols.Minimum'>
- class Multiply#
Bases:
ArraySymbol
Multiplication element-wise between two symbols.
Examples
This example multiplies two integer symbols.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(10, lower_bound=-50, upper_bound=50) >>> j = model.integer(10, lower_bound=0, upper_bound=10) >>> k = i*j >>> type(k) <class 'dwave.optimization.symbols.Multiply'>
- class NaryAdd#
Bases:
ArraySymbol
Addition element-wise of N symbols.
Examples
This example add three integer symbols.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import add ... >>> model = Model() >>> i = model.integer((10, 10), lower_bound=-50, upper_bound=50) >>> j = model.integer((10, 10), lower_bound=-20, upper_bound=150) >>> k = model.integer((10, 10), lower_bound=0, upper_bound=100) >>> l = add(i, j, k) >>> type(l) <class 'dwave.optimization.symbols.NaryAdd'>
- class NaryMaximum#
Bases:
ArraySymbol
Maximum values in an element-wise comparison of N symbols.
Examples
This example sets a symbol’s values to the maximum values of three integer decision variables.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import maximum ... >>> model = Model() >>> i = model.integer((10, 10), lower_bound=-50, upper_bound=50) >>> j = model.integer((10, 10), lower_bound=-20, upper_bound=150) >>> k = model.integer((10, 10), lower_bound=0, upper_bound=100) >>> l = maximum(i, j, k) >>> type(l) <class 'dwave.optimization.symbols.NaryMaximum'>
- class NaryMinimum#
Bases:
ArraySymbol
Minimum values in an element-wise comparison of N symbols.
Examples
This example sets a symbol’s values to the minimum values of three integer decision variables.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import minimum ... >>> model = Model() >>> i = model.integer((10, 10), lower_bound=-50, upper_bound=50) >>> j = model.integer((10, 10), lower_bound=-20, upper_bound=150) >>> k = model.integer((10, 10), lower_bound=0, upper_bound=100) >>> l = minimum(i, j, k) >>> type(l) <class 'dwave.optimization.symbols.NaryMinimum'>
- class NaryMultiply#
Bases:
ArraySymbol
Multiplication element-wise between N symbols.
Examples
This example multiplies three integer decision variables.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import multiply ... >>> model = Model() >>> i = model.integer((10, 10), lower_bound=-50, upper_bound=50) >>> j = model.integer((10, 10), lower_bound=-20, upper_bound=150) >>> k = model.integer((10, 10), lower_bound=0, upper_bound=100) >>> l = multiply(i, j, k) >>> type(l) <class 'dwave.optimization.symbols.NaryMultiply'>
- class Negative#
Bases:
ArraySymbol
Numerical negative element-wise on a symbol.
Examples
This example add the negative of an integer array.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(100, upper_bound=50) >>> i_minus = -i >>> type(i_minus) <class 'dwave.optimization.symbols.Negative'>
- class Or#
Bases:
ArraySymbol
Boolean OR element-wise between two symbols.
Examples
This example creates an OR operation between binary arrays.
>>> from dwave.optimization.model import Model >>> from dwave.optimization.mathematical import logical_or ... >>> model = Model() >>> x = model.binary(200) >>> y = model.binary(200) >>> z = logical_or(x, y) >>> type(z) <class 'dwave.optimization.symbols.Or'>
- class Permutation#
Bases:
ArraySymbol
Permutation of the elements of a symbol.
Examples
This example creates a permutation of a constant symbol.
>>> from dwave.optimization.model import Model >>> model = Model() >>> C = model.constant([[1, 2, 3], [2, 3, 1], [0, 1, 0]]) >>> l = model.list(3) >>> p = C[l, :][:, l] >>> type(p) <class 'dwave.optimization.symbols.Permutation'>
- class Prod#
Bases:
ArraySymbol
Product of the elements of a symbol.
Examples
This example adds the product of an integer symbol’s elements to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(100, lower_bound=-50, upper_bound=50) >>> i_prod = i.prod() >>> type(i_prod) <class 'dwave.optimization.symbols.Prod'>
- class QuadraticModel#
Bases:
ArraySymbol
Quadratic model.
Examples
This example adds a quadratic model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> x = model.binary(3) >>> Q = {(0, 0): 0, (0, 1): 1, (0, 2): 2, (1, 1): 1, (1, 2): 3, (2, 2): 2} >>> qm = model.quadratic_model(x, Q) >>> type(qm) <class 'dwave.optimization.symbols.QuadraticModel'>
- get_linear(v)#
Get the linear bias of v
- get_quadratic(u, v)#
Get the quadratic bias of u and v. Returns 0 if not present.
- num_interactions()#
The number of quadratic interactions in the quadratic model
- num_variables()#
The number of variables in the quadratic model.
- class Reshape#
Bases:
ArraySymbol
Reshaped symbol.
Examples
This example adds a reshaped binary symbol.
>>> from dwave.optimization.model import Model >>> model = Model() >>> x = model.binary((2, 3)) >>> x_t = x.reshape((3, 2)) >>> type(x_t) <class 'dwave.optimization.symbols.Reshape'>
- class SetVariable#
Bases:
ArraySymbol
Set decision-variable symbol.
A set variable’s possible states are the subsets of
range(n)
.- Parameters:
model – The model.
n – The possible states of the set variable are the subsets of
range(n)
.min_size – The minimum set size.
max_size – The maximum set size.
Examples
This example adds a set symbol to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> s = model.set(10) >>> type(s) <class 'dwave.optimization.symbols.SetVariable'>
- set_state(index, state)#
Set the state of the set node.
The given state must be a permuation of
range(len(state))
.
- class Square#
Bases:
ArraySymbol
Squares element-wise of a symbol.
Examples
This example adds the squares of an integer decision variable to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(10, lower_bound=-5, upper_bound=5) >>> ii = i**2 >>> type(ii) <class 'dwave.optimization.symbols.Square'>
- class Subtract#
Bases:
ArraySymbol
Subtraction element-wise of two symbols.
Examples
This example subtracts two integer symbols.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(10, lower_bound=-50, upper_bound=50) >>> j = model.integer(10, lower_bound=0, upper_bound=10) >>> k = i - j >>> type(k) <class 'dwave.optimization.symbols.Subtract'>
- class Sum#
Bases:
ArraySymbol
Sum of the elements of a symbol.
Examples
This example adds the sum of an integer symbol’s elements to a model.
>>> from dwave.optimization.model import Model >>> model = Model() >>> i = model.integer(100, lower_bound=-50, upper_bound=50) >>> i_sum = i.sum() >>> type(i_sum) <class 'dwave.optimization.symbols.Sum'>