
Penalty Model

Apr 26, 2022





Contents

1 Reference Documentation 3

i



ii



Penalty Model

One approach to solve a constraint satisfaction problem (CSP) using an Ising model or a QUBO, is to map each
individual constraint in the CSP to a ‘small’ Ising model or QUBO. This mapping is called a penalty model.

Imagine that we want to map an AND clause to a QUBO. In other words, we want the solutions to the QUBO (the
solutions that minimize the energy) to be exactly the valid configurations of an AND gate. Let 𝑧 = 𝐴𝑁𝐷(𝑥1, 𝑥2).

Before anything else, let’s import that package we will need.

import penaltymodel
import dimod
import networkx as nx

Next, we need to determine the feasible configurations that we wish to target (by making the energy of these configu-
ration in the binary quadratic low). Below is the truth table representing an AND clause.

Table 1: AND Gate
𝑥1 𝑥2 𝑧
0 0 0
0 1 0
1 0 0
1 1 1

The rows of the truth table are exactly the feasible configurations.

feasible_configurations = [{'x1': 0, 'x2': 0, 'z': 0},
{'x1': 1, 'x2': 0, 'z': 0},
{'x1': 0, 'x2': 1, 'z': 0},
{'x1': 1, 'x2': 1, 'z': 1}]

At this point, we can get a penalty model

bqm, gap = pm.get_penalty_model(feasible_configurations)

However, if we know the QUBO, we can build the penalty model ourselves. We observe that for the equation:

𝐸(𝑥1, 𝑥2, 𝑧) = 𝑥1𝑥2 − 2(𝑥1 + 𝑥2)𝑧 + 3𝑧 + 0

We get the following energies for each row in our truth table.

We can see that the energy is minimized on exactly the desired feasible configurations. So we encode this energy
function as a QUBO. We make the offset 0.0 because there is no constant energy offset.

Contents 1

https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
https://en.wikipedia.org/wiki/Ising_model
https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization
https://user-images.githubusercontent.com/8395238/34234533-8da5a364-e5a0-11e7-9d9f-068b4ab3a0fd.png


Penalty Model

qubo = dimod.BinaryQuadraticModel({'x1': 0., 'x2': 0., 'z': 3.},
{('x1', 'x2'): 1., ('x1', 'z'): 2., ('x2', 'z'): 2.},
0.0,
dimod.BINARY)

We know from the table that our ground energy is 0, but we can calculate it using the qubo to check that this is true for
the feasible configuration (0, 1, 0).

ground_energy = qubo.energy({'x1': 0, 'x2': 1, 'z': 0})

The last value that we need is the classical gap. This is the difference in energy between the lowest infeasible state and
the ground state.

With all of the pieces, we can now build the penalty model.

classical_gap = 1
p_model = pm.PenaltyModel.from_specification(spec, qubo, classical_gap, ground_energy)

2 Contents

https://user-images.githubusercontent.com/8395238/34234545-9c93e5f2-e5a0-11e7-8792-5777a5c4303e.png


CHAPTER 1

Reference Documentation

This package implements the generation and caching of penalty models.

The main function for penalty models is:

In addition to get_penalty_model(), there are some more advanced interfaces available.

1.1 Cache

1.1.1 Methods

PenaltyModelCache.close
PenaltyModelCache.
insert_binary_quadratic_model
PenaltyModelCache.insert_graph
PenaltyModelCache.
insert_penalty_model
PenaltyModelCache.insert_sampleset
PenaltyModelCache.
iter_binary_quadratic_models
PenaltyModelCache.iter_graphs
PenaltyModelCache.iter_penalty_models
PenaltyModelCache.iter_samplesets
PenaltyModelCache.retrieve

1.2 Exceptions

ImpossiblePenaltyModel
Continued on next page

3



Penalty Model

Table 2 – continued from previous page
MissingPenaltyModel

1.3 Utilities

as_graph

4 Chapter 1. Reference Documentation


	Reference Documentation

