

dwave-neal

An implementation of a simulated annealing sampler.

Example Usage

import neal

sampler = neal.SimulatedAnnealingSampler()

h = {0: -1, 1: -1}
J = {(0, 1): -1}
sampleset = sampler.sample_ising(h, J)

Documentation

	Release

	0.5.9

	Date

	Dec 21, 2021

Note

This documentation is for the latest version of
dwave-neal [https://github.com/dwavesystems/dwave-neal].
Documentation for the version currently installed by
dwave-ocean-sdk [https://github.com/dwavesystems/dwave-ocean-sdk]
is here: dwave-neal [https://docs.ocean.dwavesys.com/en/latest/docs_neal/sdk_index.html].

	Introduction

	Reference Documentation

Code

	Source [https://github.com/dwavesystems/dwave-neal]

	Installation

	License

Ocean Software

	Ocean Home [https://ocean.dwavesys.com/]

	Ocean Documentation [https://docs.ocean.dwavesys.com]

	Ocean Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]

D-Wave

	D-Wave [https://www.dwavesys.com]

	Leap [https://cloud.dwavesys.com/leap/]

	D-Wave System Documentation [https://docs.dwavesys.com/docs/latest/index.html]

Indices and tables

	Index

	Module Index

	Search Page

	Glossary [https://docs.ocean.dwavesys.com/en/stable/concepts/index.html]

Introduction

Samplers are processes that sample from low energy states of a problem’s objective function.
A binary quadratic model (BQM) sampler samples from low energy states in models
such as those defined by an Ising equation or a Quadratic Unconstrained Binary Optimization
(QUBO) problem and returns an iterable of samples, in order of increasing energy. A
dimod [https://docs.ocean.dwavesys.com/en/latest/docs_dimod/sdk_index.html] sampler provides ‘sample_qubo’ and
‘sample_ising’ methods as well as the generic BQM sampler method.

The SimulatedAnnealingSampler sampler implements the simulated annealing
algorithm, based on the technique of cooling metal from a high temperature to improve its
structure (annealing). This algorithm often finds good solutions to hard optimization problems.

Reference Documentation

	Release

	0.5.9

	Date

	Dec 21, 2021

	Simulated Annealing Sampler
	Class

	Sampler Properties

	Methods

	Alias

Simulated Annealing Sampler

A dimod sampler that uses the simulated annealing algorithm.

Class

	
class SimulatedAnnealingSampler[source]

	Simulated annealing sampler.

Also aliased as Neal.

Examples

This example solves a simple Ising problem.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> h = {'a': 0.0, 'b': 0.0, 'c': 0.0}
>>> J = {('a', 'b'): 1.0, ('b', 'c'): 1.0, ('a', 'c'): 1.0}
>>> sampleset = sampler.sample_ising(h, J, num_reads=10)
>>> print(sampleset.first.energy)
-1.0

Sampler Properties

	SimulatedAnnealingSampler.properties

	A dict containing any additional information about the sampler.

	SimulatedAnnealingSampler.parameters

	A dict where keys are the keyword parameters accepted by the sampler methods (allowed kwargs) and values are lists of SimulatedAnnealingSampler.properties relevant to each parameter.

Methods

	SimulatedAnnealingSampler.sample(bqm[, …])

	Sample from a binary quadratic model using an implemented sample method.

	SimulatedAnnealingSampler.sample_ising(h, J, …)

	Sample from an Ising model using the implemented sample method.

	SimulatedAnnealingSampler.sample_qubo(Q, …)

	Sample from a QUBO using the implemented sample method.

Alias

	
Neal

	alias of neal.sampler.SimulatedAnnealingSampler

neal.sampler.SimulatedAnnealingSampler.properties

	
SimulatedAnnealingSampler.properties = None

	A dict containing any additional information about the sampler.

Examples

This example looks at the values set for a sampler property.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> sampler.properties['beta_schedule_options']
('linear', 'geometric')

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

neal.sampler.SimulatedAnnealingSampler.parameters

	
SimulatedAnnealingSampler.parameters = None

	A dict where keys are the keyword parameters accepted by the sampler methods
(allowed kwargs) and values are lists of SimulatedAnnealingSampler.properties
relevant to each parameter.

See SimulatedAnnealingSampler.sample() for a description of the parameters.

Examples

This example looks at a sampler’s parameters and some of their values.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> for kwarg in sorted(sampler.parameters):
... print(kwarg)
beta_range
beta_schedule_type
initial_states
initial_states_generator
interrupt_function
num_reads
num_sweeps
seed
>>> sampler.parameters['beta_range']
[]
>>> sampler.parameters['beta_schedule_type']
['beta_schedule_options']

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

neal.sampler.SimulatedAnnealingSampler.sample

	
SimulatedAnnealingSampler.sample(bqm, beta_range=None, num_reads=None, num_sweeps=1000, beta_schedule_type='geometric', seed=None, interrupt_function=None, initial_states=None, initial_states_generator='random', **kwargs)[source]

	Sample from a binary quadratic model using an implemented sample method.

	Parameters

	
	bqm (dimod.BinaryQuadraticModel) – The binary quadratic model to be sampled.

	beta_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – A 2-tuple defining the beginning and end of the beta schedule,
where beta is the inverse temperature. The schedule is
interpolated within this range according to the value specified
by beta_schedule_type. Default range is set based on the total
bias associated with each node.

	num_reads (int [https://docs.python.org/3/library/functions.html#int], optional, default=len(initial_states) or 1) – Number of reads. Each read is generated by one run of the simulated
annealing algorithm. If num_reads is not explicitly given, it is
selected to match the number of initial states given. If initial states
are not provided, only one read is performed.

	num_sweeps (int [https://docs.python.org/3/library/functions.html#int], optional, default=1000) – Number of sweeps or steps.

	beta_schedule_type (string, optional, default='geometric') – Beta schedule type, or how the beta values are interpolated between
the given ‘beta_range’. Supported values are:

	linear

	geometric

	seed (int [https://docs.python.org/3/library/functions.html#int], optional) – Seed to use for the PRNG. Specifying a particular seed with a constant
set of parameters produces identical results. If not provided, a random seed
is chosen.

	initial_states (samples-like, optional, default=None) – One or more samples, each defining an initial state for all the
problem variables. Initial states are given one per read, but
if fewer than num_reads initial states are defined,
additional values are generated as specified by
initial_states_generator. See func:.as_samples for a
description of “samples-like”.

	initial_states_generator (str [https://docs.python.org/3/library/stdtypes.html#str], 'none'/'tile'/'random', optional, default='random') – Defines the expansion of initial_states if fewer than
num_reads are specified:

	
	”none”:

	If the number of initial states specified is smaller than
num_reads, raises ValueError.

	
	”tile”:

	Reuses the specified initial states if fewer than num_reads
or truncates if greater.

	
	”random”:

	Expands the specified initial states with randomly generated
states if fewer than num_reads or truncates if greater.

	interrupt_function (function, optional) – If provided, interrupt_function is called with no parameters
between each sample of simulated annealing. If the function
returns True, then simulated annealing will terminate and return
with all of the samples and energies found so far.

	Returns

	A dimod Response object.

	Return type

	dimod.Response

Examples

This example runs simulated annealing on a binary quadratic model with some
different input parameters.

>>> import dimod
>>> import neal
...
>>> sampler = neal.SimulatedAnnealingSampler()
>>> bqm = dimod.BinaryQuadraticModel({'a': .5, 'b': -.5}, {('a', 'b'): -1}, 0.0, dimod.SPIN)
>>> # Run with default parameters
>>> sampleset = sampler.sample(bqm)
>>> # Run with specified parameters
>>> sampleset = sampler.sample(bqm, seed=1234, beta_range=[0.1, 4.2],
... num_reads=1, num_sweeps=20,
... beta_schedule_type='geometric')
>>> # Reuse a seed
>>> a1 = next((sampler.sample(bqm, seed=88)).samples())['a']
>>> a2 = next((sampler.sample(bqm, seed=88)).samples())['a']
>>> a1 == a2
True

neal.sampler.SimulatedAnnealingSampler.sample_ising

	
SimulatedAnnealingSampler.sample_ising(h, J, **parameters)

	Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the
form {v: bias, …} where is a spin-valued variable and bias
is its associated bias. If a list, it is treated as a list of
biases where the indices are the variable labels.

	J (dict [https://docs.python.org/3/library/stdtypes.html#dict][(variable, variable), bias]) – Quadratic biases of the Ising problem.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_qubo()

neal.sampler.SimulatedAnnealingSampler.sample_qubo

	
SimulatedAnnealingSampler.sample_qubo(Q, **parameters)

	Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then
calls sample().

	Parameters

	
	Q (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Coefficients of a quadratic unconstrained binary optimization
(QUBO) problem. Should be a dict of the form {(u, v): bias, …}
where u, v, are binary-valued variables and bias is their
associated coefficient.

	**kwargs – See the implemented sampling for additional keyword definitions.

	Returns

	SampleSet

See also

sample(), sample_ising()

Installation

To install:

pip install dwave-neal

To build from source:

pip install -r requirements.txt
python setup.py build_ext --inplace
python setup.py install

License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

	You must give any other recipients of the Work or
Derivative Works a copy of this License; and

	You must cause any modified files to carry prominent notices
stating that You changed the files; and

	You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

	If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “[]”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 neal.sampler	

Index

 N
 | P
 | S

N

 	
 	Neal (in module neal.sampler)

 	
 	neal.sampler (module)

P

 	
 	parameters (SimulatedAnnealingSampler attribute)

 	
 	properties (SimulatedAnnealingSampler attribute)

S

 	
 	sample() (SimulatedAnnealingSampler method)

 	sample_ising() (SimulatedAnnealingSampler method)

 	
 	sample_qubo() (SimulatedAnnealingSampler method)

 	SimulatedAnnealingSampler (class in neal.sampler)

 [image: _images/dwave-neal.svg]
 [https://pypi.org/project/dwave-neal][image: _images/badge.svg]
 [https://codecov.io/gh/dwavesystems/dwave-neal][image: _images/9a4167aedef8b32f54e63acbd3330ce96b358683.svg]
 [https://docs.ocean.dwavesys.com/projects/neal/en/latest/?badge=latest][image: _images/dwave-neal1.svg]
 [https://circleci.com/gh/dwavesystems/dwave-neal]
dwave-neal

An implementation of a simulated annealing sampler.

Example Usage

import neal

sampler = neal.SimulatedAnnealingSampler()

h = {0: -1, 1: -1}
J = {(0, 1): -1}
sampleset = sampler.sample_ising(h, J)

Installation

To install:

pip install dwave-neal

To build from source:

pip install -r requirements.txt
python setup.py build_ext --inplace
python setup.py install

License

Released under the Apache License 2.0. See LICENSE file.

Contributing

Ocean’s contributing guide [https://docs.ocean.dwavesys.com/en/stable/contributing.html]
has guidelines for contributing to Ocean packages.

 All modules for which code is available

	dimod.core.sampler

	neal.sampler

 Source code for dimod.core.sampler

Copyright 2018 D-Wave Systems Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
===
"""
The :class:`.Sampler` abstract base class (see :mod:`abc`) helps you create new
dimod samplers.

Any new dimod sampler must define a subclass of :class:`.Sampler` that implements
abstract properties :attr:`~.Sampler.parameters` and :attr:`~.Sampler.properties`
and one of the abstract methods :meth:`~.Sampler.sample`, :meth:`~.Sampler.sample_ising`,
or :meth:`~.Sampler.sample_qubo`. The :class:`.Sampler` class provides the complementary
methods as mixins and ensures consistent responses.

For example, the following steps show how to easily create a dimod sampler. It is
sufficient to implement a single method (in this example the :meth:`sample_ising` method)
to create a dimod sampler with the :class:`.Sampler` class.

.. testcode::

 class LinearIsingSampler(dimod.Sampler):

 def sample_ising(self, h, J):
 sample = linear_ising(h, J)
 energy = dimod.ising_energy(sample, h, J)
 return dimod.SampleSet.from_samples([sample], vartype='SPIN', energy=[energy])

 @property
 def properties(self):
 return dict()

 @property
 def parameters(self):
 return dict()

For this example, the implemented sampler :meth:`~.Sampler.sample_ising` can be based on
a simple placeholder function, which returns a sample that minimizes the linear terms:

.. testcode::

 def linear_ising(h, J):
 sample = {}
 for v in h:
 if h[v] < 0:
 sample[v] = +1
 else:
 sample[v] = -1
 return sample

The :class:`.Sampler` ABC provides the other sample methods "for free"
as mixins.

>>> sampler = LinearIsingSampler()
...
... # Implemented by class LinearIsingSampler:
>>> response = sampler.sample_ising({'a': -1}, {})
...
... # Mixins provided by Sampler class:
>>> response = sampler.sample_qubo({('a', 'a'): 1})
>>> response = sampler.sample(dimod.BinaryQuadraticModel.from_ising({'a': -1}, {}))

Below is a more complex version of the same sampler, where the :attr:`properties` and
:attr:`parameters` properties return non-empty dicts.

.. testcode::

 class FancyLinearIsingSampler(dimod.Sampler):
 def __init__(self):
 self._properties = {'description': 'a simple sampler that only considers the linear terms'}
 self._parameters = {'verbose': []}

 def sample_ising(self, h, J, verbose=False):
 sample = linear_ising(h, J)
 energy = dimod.ising_energy(sample, h, J)
 if verbose:
 print(sample)
 return dimod.SampleSet.from_samples([sample], energy=[energy])

 @property
 def properties(self):
 return self._properties

 @property
 def parameters(self):
 return self._parameters

"""
import abc

from dimod.binary_quadratic_model import BinaryQuadraticModel
from dimod.exceptions import InvalidSampler
from dimod.meta import SamplerABCMeta, samplemixinmethod
from dimod.vartypes import Vartype

__all__ = ['Sampler']

class Sampler(metaclass=SamplerABCMeta):
 """Abstract base class for dimod samplers.

 Provides all methods :meth:`~.Sampler.sample`, :meth:`~.Sampler.sample_ising`,
 :meth:`~.Sampler.sample_qubo` assuming at least one is implemented.

 """

 @abc.abstractproperty # for python2 compatibility
 def parameters(self):
 """dict: A dict where keys are the keyword parameters accepted by the sampler
 methods and values are lists of the properties relevent to each parameter.
 """
 pass

 @abc.abstractproperty # for python2 compatibility
 def properties(self):
 """dict: A dict containing any additional information about the sampler.
 """
 pass

 @samplemixinmethod
 def sample(self, bqm, **parameters):
 """Sample from a binary quadratic model.

 This method is inherited from the :class:`.Sampler` base class.

 Converts the binary quadratic model to either Ising or QUBO format and
 then invokes an implemented sampling method (one of
 :meth:`.sample_ising` or :meth:`.sample_qubo`).

 Args:
 :obj:`.BinaryQuadraticModel`:
 A binary quadratic model.

 **kwargs:
 See the implemented sampling for additional keyword definitions.

 Returns:
 :obj:`.SampleSet`

 See also:
 :meth:`.sample_ising`, :meth:`.sample_qubo`

 """

 # we try to use the matching sample method if possible
 if bqm.vartype is Vartype.SPIN:
 if not getattr(self.sample_ising, '__issamplemixin__', False):
 # sample_ising is implemented
 h, J, offset = bqm.to_ising()
 sampleset = self.sample_ising(h, J, **parameters)
 else:
 Q, offset = bqm.to_qubo()
 sampleset = self.sample_qubo(Q, **parameters)
 elif bqm.vartype is Vartype.BINARY:
 if not getattr(self.sample_qubo, '__issamplemixin__', False):
 # sample_qubo is implemented
 Q, offset = bqm.to_qubo()
 sampleset = self.sample_qubo(Q, **parameters)
 else:
 h, J, offset = bqm.to_ising()
 sampleset = self.sample_ising(h, J, **parameters)
 else:
 raise RuntimeError("binary quadratic model has an unknown vartype")

 # if the vartype already matches this will just adjust the offset
 return sampleset.change_vartype(bqm.vartype, energy_offset=offset)

 @samplemixinmethod
 def sample_ising(self, h, J, **parameters):
 """Sample from an Ising model using the implemented sample method.

 This method is inherited from the :class:`.Sampler` base class.

 Converts the Ising model into a :obj:`.BinaryQuadraticModel` and then
 calls :meth:`.sample`.

 Args:
 h (dict/list):
 Linear biases of the Ising problem. If a dict, should be of the
 form `{v: bias, ...}` where is a spin-valued variable and `bias`
 is its associated bias. If a list, it is treated as a list of
 biases where the indices are the variable labels.

 J (dict[(variable, variable), bias]):
 Quadratic biases of the Ising problem.

 **kwargs:
 See the implemented sampling for additional keyword definitions.

 Returns:
 :obj:`.SampleSet`

 See also:
 :meth:`.sample`, :meth:`.sample_qubo`

 """
 bqm = BinaryQuadraticModel.from_ising(h, J)
 return self.sample(bqm, **parameters)

 @samplemixinmethod
 def sample_qubo(self, Q, **parameters):
 """Sample from a QUBO using the implemented sample method.

 This method is inherited from the :class:`.Sampler` base class.

 Converts the QUBO into a :obj:`.BinaryQuadraticModel` and then
 calls :meth:`.sample`.

 Args:
 Q (dict):
 Coefficients of a quadratic unconstrained binary optimization
 (QUBO) problem. Should be a dict of the form `{(u, v): bias, ...}`
 where `u`, `v`, are binary-valued variables and `bias` is their
 associated coefficient.

 **kwargs:
 See the implemented sampling for additional keyword definitions.

 Returns:
 :obj:`.SampleSet`

 See also:
 :meth:`.sample`, :meth:`.sample_ising`

 """
 bqm = BinaryQuadraticModel.from_qubo(Q)
 return self.sample(bqm, **parameters)

 Source code for neal.sampler

Copyright 2018 D-Wave Systems Inc.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#
==
"""
A dimod :term:`sampler` that uses the simulated annealing algorithm.

"""
import math

from numbers import Integral
from random import randint
from collections import defaultdict

import dimod
import numpy as np

import neal.simulated_annealing as sa

__all__ = ["Neal", "SimulatedAnnealingSampler", "default_beta_range"]

[docs]class SimulatedAnnealingSampler(dimod.Sampler, dimod.Initialized):
 """Simulated annealing sampler.

 Also aliased as :class:`.Neal`.

 Examples:
 This example solves a simple Ising problem.

 >>> import neal
 >>> sampler = neal.SimulatedAnnealingSampler()
 >>> h = {'a': 0.0, 'b': 0.0, 'c': 0.0}
 >>> J = {('a', 'b'): 1.0, ('b', 'c'): 1.0, ('a', 'c'): 1.0}
 >>> sampleset = sampler.sample_ising(h, J, num_reads=10)
 >>> print(sampleset.first.energy)
 -1.0

 """

 parameters = None
 """dict: A dict where keys are the keyword parameters accepted by the sampler methods
 (allowed kwargs) and values are lists of :attr:`SimulatedAnnealingSampler.properties`
 relevant to each parameter.

 See :meth:`.SimulatedAnnealingSampler.sample` for a description of the parameters.

 Examples:
 This example looks at a sampler's parameters and some of their values.

 >>> import neal
 >>> sampler = neal.SimulatedAnnealingSampler()
 >>> for kwarg in sorted(sampler.parameters):
 ... print(kwarg)
 beta_range
 beta_schedule_type
 initial_states
 initial_states_generator
 interrupt_function
 num_reads
 num_sweeps
 seed
 >>> sampler.parameters['beta_range']
 []
 >>> sampler.parameters['beta_schedule_type']
 ['beta_schedule_options']

 """

 properties = None
 """dict: A dict containing any additional information about the sampler.

 Examples:
 This example looks at the values set for a sampler property.

 >>> import neal
 >>> sampler = neal.SimulatedAnnealingSampler()
 >>> sampler.properties['beta_schedule_options']
 ('linear', 'geometric')

 """

 def __init__(self):
 # create a local copy in case folks for some reason want to modify them
 self.parameters = {'beta_range': [],
 'num_reads': [],
 'num_sweeps': [],
 'beta_schedule_type': ['beta_schedule_options'],
 'seed': [],
 'interrupt_function': [],
 'initial_states': [],
 'initial_states_generator': [],
 }
 self.properties = {'beta_schedule_options': ('linear', 'geometric')
 }

[docs] def sample(self, bqm, beta_range=None, num_reads=None, num_sweeps=1000,
 beta_schedule_type="geometric", seed=None, interrupt_function=None,
 initial_states=None, initial_states_generator="random", **kwargs):
 """Sample from a binary quadratic model using an implemented sample method.

 Args:
 bqm (:class:`dimod.BinaryQuadraticModel`):
 The binary quadratic model to be sampled.

 beta_range (tuple, optional):
 A 2-tuple defining the beginning and end of the beta schedule,
 where beta is the inverse temperature. The schedule is
 interpolated within this range according to the value specified
 by `beta_schedule_type`. Default range is set based on the total
 bias associated with each node.

 num_reads (int, optional, default=len(initial_states) or 1):
 Number of reads. Each read is generated by one run of the simulated
 annealing algorithm. If `num_reads` is not explicitly given, it is
 selected to match the number of initial states given. If initial states
 are not provided, only one read is performed.

 num_sweeps (int, optional, default=1000):
 Number of sweeps or steps.

 beta_schedule_type (string, optional, default='geometric'):
 Beta schedule type, or how the beta values are interpolated between
 the given 'beta_range'. Supported values are:

 * linear
 * geometric

 seed (int, optional):
 Seed to use for the PRNG. Specifying a particular seed with a constant
 set of parameters produces identical results. If not provided, a random seed
 is chosen.

 initial_states (samples-like, optional, default=None):
 One or more samples, each defining an initial state for all the
 problem variables. Initial states are given one per read, but
 if fewer than `num_reads` initial states are defined,
 additional values are generated as specified by
 `initial_states_generator`. See func:`.as_samples` for a
 description of "samples-like".

 initial_states_generator (str, 'none'/'tile'/'random', optional, default='random'):
 Defines the expansion of `initial_states` if fewer than
 `num_reads` are specified:

 * "none":
 If the number of initial states specified is smaller than
 `num_reads`, raises ValueError.

 * "tile":
 Reuses the specified initial states if fewer than `num_reads`
 or truncates if greater.

 * "random":
 Expands the specified initial states with randomly generated
 states if fewer than `num_reads` or truncates if greater.

 interrupt_function (function, optional):
 If provided, interrupt_function is called with no parameters
 between each sample of simulated annealing. If the function
 returns True, then simulated annealing will terminate and return
 with all of the samples and energies found so far.

 Returns:
 :obj:`dimod.Response`: A `dimod` :obj:`~dimod.Response` object.

 Examples:
 This example runs simulated annealing on a binary quadratic model with some
 different input parameters.

 >>> import dimod
 >>> import neal
 ...
 >>> sampler = neal.SimulatedAnnealingSampler()
 >>> bqm = dimod.BinaryQuadraticModel({'a': .5, 'b': -.5}, {('a', 'b'): -1}, 0.0, dimod.SPIN)
 >>> # Run with default parameters
 >>> sampleset = sampler.sample(bqm)
 >>> # Run with specified parameters
 >>> sampleset = sampler.sample(bqm, seed=1234, beta_range=[0.1, 4.2],
 ... num_reads=1, num_sweeps=20,
 ... beta_schedule_type='geometric')
 >>> # Reuse a seed
 >>> a1 = next((sampler.sample(bqm, seed=88)).samples())['a']
 >>> a2 = next((sampler.sample(bqm, seed=88)).samples())['a']
 >>> a1 == a2
 True

 """
 # get the original vartype so we can return consistently
 original_vartype = bqm.vartype

 # convert to spin (if needed)
 if bqm.vartype is not dimod.SPIN:
 bqm = bqm.change_vartype(dimod.SPIN, inplace=False)

 # parse_initial_states could handle seed generation, but because we're
 # sharing it with the SA algo, we handle it out here
 if seed is None:
 seed = randint(0, (1 << 32 - 1))
 elif not isinstance(seed, Integral):
 raise TypeError("'seed' should be None or a positive integer")
 if not (0 < seed < (2**32 - 1)):
 error_msg = "'seed' should be an integer between 0 and 2^64 - 1"
 raise ValueError(error_msg)

 # parse the inputs
 parsed = self.parse_initial_states(
 bqm,
 num_reads=num_reads,
 initial_states=initial_states,
 initial_states_generator=initial_states_generator,
 seed=seed)

 num_reads = parsed.num_reads

 # read out the initial states and the variable order
 initial_states_array = np.ascontiguousarray(
 parsed.initial_states.record.sample)

 variable_order = parsed.initial_states.variables

 # read out the BQM
 ldata, (irow, icol, qdata), off = bqm.to_numpy_vectors(
 variable_order=variable_order)

 if interrupt_function and not callable(interrupt_function):
 raise TypeError("'interrupt_function' should be a callable")

 # handle beta_schedule et al
 if beta_range is None:
 beta_range = _default_ising_beta_range(bqm.linear, bqm.quadratic)

 num_sweeps_per_beta = max(1, num_sweeps // 1000.0)
 num_betas = int(math.ceil(num_sweeps / num_sweeps_per_beta))
 if beta_schedule_type == "linear":
 # interpolate a linear beta schedule
 beta_schedule = np.linspace(*beta_range, num=num_betas)
 elif beta_schedule_type == "geometric":
 # interpolate a geometric beta schedule
 beta_schedule = np.geomspace(*beta_range, num=num_betas)
 else:
 raise ValueError("Beta schedule type {} not implemented".format(beta_schedule_type))

 # run the simulated annealing algorithm
 samples, energies = sa.simulated_annealing(
 num_reads, ldata, irow, icol, qdata,
 num_sweeps_per_beta, beta_schedule,
 seed, initial_states_array, interrupt_function)

 info = {
 "beta_range": beta_range,
 "beta_schedule_type": beta_schedule_type
 }
 response = dimod.SampleSet.from_samples(
 (samples, variable_order),
 energy=energies+bqm.offset, # add back in the offset
 info=info,
 vartype=dimod.SPIN
)

 response.change_vartype(original_vartype, inplace=True)

 return response

Neal = SimulatedAnnealingSampler

def _default_ising_beta_range(h, J):
 """Determine the starting and ending beta from h J

 Args:
 h (dict)

 J (dict)

 Assume each variable in J is also in h.

 We use the minimum bias to give a lower bound on the minimum energy gap, such at the
 final sweeps we are highly likely to settle into the current valley.
 """
 # Get nonzero, absolute biases
 abs_h = [abs(hh) for hh in h.values() if hh != 0]
 abs_J = [abs(jj) for jj in J.values() if jj != 0]
 abs_biases = abs_h + abs_J

 if not abs_biases:
 return [0.1, 1.0]

 # Rough approximation of min change in energy when flipping a qubit
 min_delta_energy = min(abs_biases)

 # Combine absolute biases by variable
 abs_bias_dict = defaultdict(int, {k: abs(v) for k, v in h.items()})
 for (k1, k2), v in J.items():
 abs_bias_dict[k1] += abs(v)
 abs_bias_dict[k2] += abs(v)

 # Find max change in energy when flipping a single qubit
 max_delta_energy = max(abs_bias_dict.values())

 # Selecting betas based on probability of flipping a qubit
 # Hot temp: We want to scale hot_beta so that for the most unlikely qubit flip, we get at least
 # 50% chance of flipping.(This means all other qubits will have > 50% chance of flipping
 # initially.) Most unlikely flip is when we go from a very low energy state to a high energy
 # state, thus we calculate hot_beta based on max_delta_energy.
 # 0.50 = exp(-hot_beta * max_delta_energy)
 #
 # Cold temp: Towards the end of the annealing schedule, we want to minimize the chance of
 # flipping. Don't want to be stuck between small energy tweaks. Hence, set cold_beta so that
 # at minimum energy change, the chance of flipping is set to 1%.
 # 0.01 = exp(-cold_beta * min_delta_energy)
 hot_beta = np.log(2) / max_delta_energy
 cold_beta = np.log(100) / min_delta_energy

 return [hot_beta, cold_beta]

def default_beta_range(bqm):
 ising = bqm.spin
 return _default_ising_beta_range(ising.linear, ising.quadratic)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 dwave-neal

 		
 Introduction

 		
 Reference Documentation

 		
 Simulated Annealing Sampler

 		
 Class

 		
 Sampler Properties

 		
 Methods

 		
 Alias

 		
 Installation

 		
 License

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

