
dwave-neal Documentation
Release 0.5.9

D-Wave Systems Inc

Jun 10, 2022

Contents

1 Example Usage 3

2 Documentation 5

3 Indices and tables 15

Python Module Index 17

Index 19

i

ii

dwave-neal Documentation, Release 0.5.9

An implementation of a simulated annealing sampler.

A simulated annealing sampler can be used for approximate Boltzmann sampling or heuristic optimization. This
implementation approaches the equilibrium distribution by performing updates at a sequence of increasing beta val-
ues, beta_schedule, terminating at the target beta. Each spin is updated once in a fixed order per point in the
beta_schedule according to a Metropolis- Hastings update. When beta is large the target distribution concentrates, at
equilibrium, over ground states of the model. Samples are guaranteed to match the equilibrium for long ‘smooth’ beta
schedules.

For more information, see Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983). “Optimization by Simulated Anneal-
ing”. Science. 220 (4598): 671–680

Contents 1

dwave-neal Documentation, Release 0.5.9

2 Contents

CHAPTER 1

Example Usage

import neal

sampler = neal.SimulatedAnnealingSampler()

h = {0: -1, 1: -1}
J = {(0, 1): -1}
sampleset = sampler.sample_ising(h, J)

3

dwave-neal Documentation, Release 0.5.9

4 Chapter 1. Example Usage

CHAPTER 2

Documentation

Note: This documentation is for the latest version of dwave-neal. Documentation for the version currently installed
by dwave-ocean-sdk is here: dwave-neal.

2.1 Introduction

Samplers are processes that sample from low energy states of a problem’s objective function. A binary quadratic model
(BQM) sampler samples from low energy states in models such as those defined by an Ising equation or a Quadratic
Unconstrained Binary Optimization (QUBO) problem and returns an iterable of samples, in order of increasing energy.
A dimod sampler provides ‘sample_qubo’ and ‘sample_ising’ methods as well as the generic BQM sampler method.

The SimulatedAnnealingSampler sampler implements the simulated annealing algorithm, based on the tech-
nique of cooling metal from a high temperature to improve its structure (annealing). This algorithm often finds good
solutions to hard optimization problems.

2.2 Reference Documentation

Release 0.5.9

Date Jun 10, 2022

2.2.1 Simulated Annealing Sampler

A dimod sampler that uses the simulated annealing algorithm.

5

https://github.com/dwavesystems/dwave-neal
https://github.com/dwavesystems/dwave-ocean-sdk
https://docs.ocean.dwavesys.com/en/latest/docs_neal/sdk_index.html
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/sdk_index.html

dwave-neal Documentation, Release 0.5.9

Class

class SimulatedAnnealingSampler
Simulated annealing sampler.

Also aliased as Neal.

Examples

This example solves a simple Ising problem.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> h = {'a': 0.0, 'b': 0.0, 'c': 0.0}
>>> J = {('a', 'b'): 1.0, ('b', 'c'): 1.0, ('a', 'c'): 1.0}
>>> sampleset = sampler.sample_ising(h, J, num_reads=10)
>>> print(sampleset.first.energy)
-1.0

Sampler Properties

SimulatedAnnealingSampler.properties A dict containing any additional information about the
sampler.

SimulatedAnnealingSampler.parameters A dict where keys are the keyword parameters accepted
by the sampler methods (allowed kwargs) and val-
ues are lists of SimulatedAnnealingSampler.
properties relevant to each parameter.

neal.sampler.SimulatedAnnealingSampler.properties

SimulatedAnnealingSampler.properties = None
A dict containing any additional information about the sampler.

Examples

This example looks at the values set for a sampler property.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> sampler.properties['beta_schedule_options']
('linear', 'geometric', 'custom')

Type dict

neal.sampler.SimulatedAnnealingSampler.parameters

SimulatedAnnealingSampler.parameters = None
A dict where keys are the keyword parameters accepted by the sampler methods (allowed kwargs) and values
are lists of SimulatedAnnealingSampler.properties relevant to each parameter.

See SimulatedAnnealingSampler.sample() for a description of the parameters.

6 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#dict

dwave-neal Documentation, Release 0.5.9

Examples

This example looks at a sampler’s parameters and some of their values.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> for kwarg in sorted(sampler.parameters):
... print(kwarg)
beta_range
beta_schedule_type
initial_states
initial_states_generator
interrupt_function
num_reads
num_sweeps
num_sweeps_per_beta
seed
>>> sampler.parameters['beta_range']
[]
>>> sampler.parameters['beta_schedule_type']
['beta_schedule_options']

Type dict

Methods

SimulatedAnnealingSampler.sample(bqm[,
. . .])

Sample from a binary quadratic model using an imple-
mented sample method.

SimulatedAnnealingSampler.
sample_ising(h, J, . . .)

Sample from an Ising model using the implemented
sample method.

SimulatedAnnealingSampler.
sample_qubo(Q, . . .)

Sample from a QUBO using the implemented sample
method.

neal.sampler.SimulatedAnnealingSampler.sample

SimulatedAnnealingSampler.sample(bqm, beta_range=None, num_reads=None,
num_sweeps=None, num_sweeps_per_beta=1,
beta_schedule_type=’geometric’, seed=None, in-
terrupt_function=None, beta_schedule=None, ini-
tial_states=None, initial_states_generator=’random’,
**kwargs)

Sample from a binary quadratic model using an implemented sample method.

Parameters

• bqm (dimod.BinaryQuadraticModel) – The binary quadratic model to be sampled.

• beta_range (tuple or list, optional) – A 2-tuple or list defining the begin-
ning and end of the beta schedule, where beta is the inverse temperature. The schedule is in-
terpolated within this range according to the value specified by beta_schedule_type.
Default range is set based on the total bias associated with each node.

• num_reads (int, optional, default=len(initial_states) or 1) –
Number of reads. Each read is generated by one run of the simulated annealing algorithm.

2.2. Reference Documentation 7

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.ocean.dwavesys.com/en/latest/hidden.html#dimod.BinaryQuadraticModel
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

dwave-neal Documentation, Release 0.5.9

If num_reads is not explicitly given, it is selected to match the number of initial states given.
If initial states are not provided, only one read is performed.

• num_sweeps (int, optional, default=``len(beta_schedule)*num_sweeps_per_beta``
or 1000) – Number of sweeps used in annealing. If no value is provided and
beta_schedule is None the value is defaulted to 1000.

• num_sweeps_per_beta (int, optional, default=1) – Number of sweeps to
perform at each beta. One sweep consists of a sequential Metropolis update of all spins.

• beta_schedule_type (string, optional, default="geometric")
– Beta schedule type, or how the beta values are interpolated between the given
beta_range. Supported values are:

– ”linear”

– ”geometric”

– ”custom”

”custom” is recommended for high-performance applications, which typically require opti-
mizing beta schedules beyond those of the “linear” and “geometric” options, with bounds
beyond those provided by default. num_sweeps_per_beta and beta_schedule
fully specify a custom schedule.

• beta_schedule (array-like, optional, default = None) – Sequence of
beta values swept. Format compatible with numpy.array(beta_schedule,dtype=float) re-
quired. Values should be non-negative.

• seed (int, optional, default = None) – Seed to use for the PRNG. Specifying
a particular seed with a constant set of parameters produces identical results. If not provided,
a random seed is chosen.

• initial_states (samples-like, optional, default=None) – One or
more samples, each defining an initial state for all the problem variables. Initial states
are given one per read, but if fewer than num_reads initial states are defined, addi-
tional values are generated as specified by initial_states_generator. See func:.
as_samples for a description of “samples-like”.

• initial_states_generator (str, "none"/"tile"/"random",
optional, default="random") – Defines the expansion of initial_states if
fewer than num_reads are specified:

– ”none”: If the number of initial states specified is smaller than num_reads, raises Val-
ueError.

– ”tile”: Reuses the specified initial states if fewer than num_reads or truncates if
greater.

– ”random”: Expands the specified initial states with randomly generated states if fewer
than num_reads or truncates if greater.

• interrupt_function (function, optional) – If provided, interrupt_function is
called with no parameters between each sample of simulated annealing. If the function
returns True, then simulated annealing will terminate and return with all of the samples and
energies found so far.

Returns dimod.SampleSet

8 Chapter 2. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/sampleset.html#dimod.SampleSet

dwave-neal Documentation, Release 0.5.9

Examples

This example runs simulated annealing on a binary quadratic model with some different input parameters.

>>> import dimod
>>> import neal
...
>>> sampler = neal.SimulatedAnnealingSampler()
>>> bqm = dimod.BinaryQuadraticModel({'a': .5, 'b': -.5},
... {('a', 'b'): -1}, 0.0,
... dimod.SPIN)
>>> # Run with default parameters
>>> sampleset = sampler.sample(bqm)
>>> # Run with specified parameters
>>> sampleset = sampler.sample(bqm, seed=1234,
... beta_range=[0.1, 4.2],
... num_sweeps=20,
... beta_schedule_type='geometric')
>>> # Reuse a seed
>>> a1 = next((sampler.sample(bqm, seed=88)).samples())['a']
>>> a2 = next((sampler.sample(bqm, seed=88)).samples())['a']
>>> a1 == a2
True

neal.sampler.SimulatedAnnealingSampler.sample_ising

SimulatedAnnealingSampler.sample_ising(h, J, **parameters)
Sample from an Ising model using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the Ising model into a BinaryQuadraticModel and then calls sample().

Parameters

• h (dict/list) – Linear biases of the Ising problem. If a dict, should be of the form {v:
bias, . . . } where is a spin-valued variable and bias is its associated bias. If a list, it is treated
as a list of biases where the indices are the variable labels.

• J (dict[(variable, variable), bias]) – Quadratic biases of the Ising prob-
lem.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns SampleSet

See also:

sample(), sample_qubo()

neal.sampler.SimulatedAnnealingSampler.sample_qubo

SimulatedAnnealingSampler.sample_qubo(Q, **parameters)
Sample from a QUBO using the implemented sample method.

This method is inherited from the Sampler base class.

Converts the QUBO into a BinaryQuadraticModel and then calls sample().

2.2. Reference Documentation 9

https://docs.python.org/3/library/stdtypes.html#dict

dwave-neal Documentation, Release 0.5.9

Parameters

• Q (dict) – Coefficients of a quadratic unconstrained binary optimization (QUBO) problem.
Should be a dict of the form {(u, v): bias, . . . } where u, v, are binary-valued variables and
bias is their associated coefficient.

• **kwargs – See the implemented sampling for additional keyword definitions.

Returns SampleSet

See also:

sample(), sample_ising()

Alias

Neal
alias of neal.sampler.SimulatedAnnealingSampler

2.3 Installation

To install:

pip install dwave-neal

To build from source:

pip install -r requirements.txt
python setup.py build_ext --inplace
python setup.py install

2.4 License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

10 Chapter 2. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
http://www.apache.org/licenses/

dwave-neal Documentation, Release 0.5.9

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

2.4. License 11

dwave-neal Documentation, Release 0.5.9

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file

12 Chapter 2. Documentation

dwave-neal Documentation, Release 0.5.9

format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

2.4. License 13

http://www.apache.org/licenses/LICENSE-2.0

dwave-neal Documentation, Release 0.5.9

14 Chapter 2. Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

• Glossary

15

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html

dwave-neal Documentation, Release 0.5.9

16 Chapter 3. Indices and tables

Python Module Index

s
neal.sampler, 5

17

dwave-neal Documentation, Release 0.5.9

18 Python Module Index

Index

N
Neal (in module neal.sampler), 10
neal.sampler (module), 5

P
parameters (SimulatedAnnealingSampler attribute), 6
properties (SimulatedAnnealingSampler attribute), 6

S
sample() (SimulatedAnnealingSampler method), 7
sample_ising() (SimulatedAnnealingSampler

method), 9
sample_qubo() (SimulatedAnnealingSampler

method), 9
SimulatedAnnealingSampler (class in

neal.sampler), 6

19

	Example Usage
	Documentation
	Indices and tables
	Python Module Index
	Index

