
DWaveNetworkX Documentation
Release 0.8.13

D-Wave Systems Inc

Mar 20, 2023

Contents

1 Installation 3

2 License 5

3 Contributing 7

Bibliography 73

Python Module Index 75

Index 77

i

ii

DWaveNetworkX Documentation, Release 0.8.13

D-Wave NetworkX is an extension of NetworkX—a Python language package for exploration and analysis of networks
and network algorithms—for users of D-Wave Systems. It provides tools for working with Chimera graphs and
implementations of graph-theory algorithms on the D-Wave system and other binary quadratic model samplers.

The example below generates a graph for a Chimera unit cell (eight nodes in a 4-by-2 bipartite architecture).

>>> import dwave_networkx as dnx
>>> graph = dnx.chimera_graph(1, 1, 4)

See the documentation for more examples.

Contents 1

https://networkx.org

DWaveNetworkX Documentation, Release 0.8.13

2 Contents

CHAPTER 1

Installation

Installation from PyPi:

pip install dwave_networkx

Installation from source:

pip install -r requirements.txt
python setup.py install

3

DWaveNetworkX Documentation, Release 0.8.13

4 Chapter 1. Installation

CHAPTER 2

License

Released under the Apache License 2.0.

5

DWaveNetworkX Documentation, Release 0.8.13

6 Chapter 2. License

CHAPTER 3

Contributing

Ocean’s contributing guide has guidelines for contributing to Ocean packages.

3.1 Documentation

Note: This documentation is for the latest version of dwave-networkx. Documentation for the version currently
installed by dwave-ocean-sdk is here: dwave-networkx.

3.1.1 Introduction

D-Wave NetworkX provides tools for working with Chimera and Pegasus graphs and implementations of graph-
theory algorithms on the D-Wave system and other binary quadratic model samplers; for example, functions
such as draw_chimera() provide easy visualization for Chimera graphs; functions such as maximum_cut() or
min_vertex_cover() provide graph algorithms useful to optimization problems that fit well with the D-Wave system.

Like the D-Wave system, all other supported samplers must have sample_qubo and sample_ising methods for solving
Ising and QUBO models and return an iterable of samples in order of increasing energy. You can set a default sampler
using the set_default_sampler() function.

• For an introduction to quantum processing unit (QPU) topologies such as the Chimera‘ and Pegasus graphs, see
Topology.

• For an introduction to binary quadratic models (BQMs), see Binary Quadratic Models.

• For an introduction to samplers, see Samplers and Composites.

Example

Below you can see how to create Chimera graphs implemented in the D-Wave 2X and D-Wave 2000Q systems:

7

https://docs.ocean.dwavesys.com/en/stable/contributing.html
https://github.com/dwavesystems/dwave-networkx
https://github.com/dwavesystems/dwave-ocean-sdk
https://docs.ocean.dwavesys.com/en/latest/docs_dnx/sdk_index.html
https://docs.ocean.dwavesys.com/en/latest/concepts/topology.html
https://docs.ocean.dwavesys.com/en/latest/concepts/bqm.html
https://docs.ocean.dwavesys.com/en/latest/concepts/samplers.html

DWaveNetworkX Documentation, Release 0.8.13

import dwave_networkx as dnx

D-Wave 2X
C = dnx.chimera_graph(12, 12, 4)

D-Wave 2000Q
C = dnx.chimera_graph(16, 16, 4)

3.1.2 Reference Documentation

Release 0.8.13

Date Mar 20, 2023

Algorithms

Implementations of graph-theory algorithms on the D-Wave system and other binary quadratic model samplers.

Canonicalization

canonical_chimera_labeling(G[, t]) Returns a mapping from the labels of G to chimera-
indexed labeling.

dwave_networkx.canonical_chimera_labeling

canonical_chimera_labeling(G, t=None)
Returns a mapping from the labels of G to chimera-indexed labeling.

Parameters

• G (NetworkX graph) – A Chimera-structured graph.

• t (int (optional, default 4)) – Size of the shore within each Chimera tile.

Returns chimera_indices – A mapping from the current labels to a 4-tuple of Chimera indices.

Return type dict

Clique

A clique in an undirected graph G = (V, E) is a subset of the vertex set such that for every two vertices in C there exists
an edge connecting the two.

8 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

maximum_clique(G[, sampler, lagrange]) Returns an approximate maximum clique.
clique_number(G[, sampler, lagrange]) Returns the number of vertices in the maximum clique

of a graph.
is_clique(G, clique_nodes) Determines whether the given nodes form a clique.

dwave_networkx.maximum_clique

maximum_clique(G, sampler=None, lagrange=2.0, **sampler_args)
Returns an approximate maximum clique. A clique in an undirected graph, G = (V, E), is a subset of the vertex
set 𝐶 ⊆ 𝑉 such that for every two vertices in C there exists an edge connecting the two. This is equivalent
to saying that the subgraph induced by C is complete (in some cases, the term clique may also refer to the
subgraph). A maximum clique is a clique of the largest possible size in a given graph.

This function works by finding the maximum independent set of the compliment graph of the given graph G
which is equivalent to finding maximum clique. It defines a QUBO with ground states corresponding to a
maximum weighted independent set and uses the sampler to sample from it.

Parameters

• G (NetworkX graph) – The graph on which to find a maximum clique.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• lagrange (optional (default 2)) – Lagrange parameter to weight constraints (no
edges within set) versus objective (largest set possible).

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns clique_nodes – List of nodes that form a maximum clique, as determined by the given
sampler.

Return type list

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

References

Maximum Clique on Wikipedia

Independent Set on Wikipedia

QUBO on Wikipedia

3.1. Documentation 9

https://docs.python.org/3/library/stdtypes.html#list
https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.clique_number

clique_number(G, sampler=None, lagrange=2.0, **sampler_args)
Returns the number of vertices in the maximum clique of a graph. A maximum clique is a clique of the largest
possible size in a given graph. The clique number math:omega(G) of a graph G is the number of vertices in a
maximum clique in G. The intersection number of G is the smallest number of cliques that together cover all
edges of G.

This function works by finding the maximum independent set of the compliment graph of the given graph G
which is equivalent to finding maximum clique. It defines a QUBO with ground states corresponding to a
maximum weighted independent set and uses the sampler to sample from it.

Parameters

• G (NetworkX graph) – The graph on which to find a maximum clique.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• lagrange (optional (default 2)) – Lagrange parameter to weight constraints (no
edges within set) versus objective (largest set possible).

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns clique_nodes – List of nodes that form a maximum clique, as determined by the given
sampler.

Return type list

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

References

Maximum Clique on Wikipedia

dwave_networkx.is_clique

is_clique(G, clique_nodes)
Determines whether the given nodes form a clique.

A clique is a subset of nodes of an undirected graph such that every two distinct nodes in the clique are adjacent.

Parameters

• G (NetworkX graph) – The graph on which to check the clique nodes.

• clique_nodes (list) – List of nodes that form a clique, as determined by the given
sampler.

Returns is_clique – True if clique_nodes forms a clique.

10 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#list
https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://docs.python.org/3/library/stdtypes.html#list

DWaveNetworkX Documentation, Release 0.8.13

Return type bool

Example

This example checks two sets of nodes, both derived from a single Chimera unit cell, for an independent set.
The first set is the horizontal tile’s nodes; the second has nodes from the horizontal and verical tiles.

>>> import dwave_networkx as dnx
>>> G = dnx.chimera_graph(1, 1, 4)
>>> dnx.is_clique(G, [0, 1, 2, 3])
False
>>> dnx.is_clique(G, [0, 4])
True

Coloring

Graph coloring is the problem of assigning a color to the vertices of a graph in a way that no adjacent vertices have
the same color.

Example

The map-coloring problem is to assign a color to each region of a map (represented by a vertex on a graph) such that
any two regions sharing a border (represented by an edge of the graph) have different colors.

Fig. 1: Coloring a map of Canada with four colors.

is_vertex_coloring(G, coloring) Determines whether the given coloring is a vertex col-
oring of graph G.

min_vertex_color(G[, sampler, chromatic_lb,
. . .])

Returns an approximate minimum vertex coloring.

min_vertex_color_qubo(G[, chromatic_lb, . . .]) Return a QUBO with ground states corresponding to a
minimum vertex coloring.

vertex_color(G, colors[, sampler]) Returns an approximate vertex coloring.
vertex_color_qubo(G, colors) Return the QUBO with ground states corresponding to

a vertex coloring.

3.1. Documentation 11

https://docs.python.org/3/library/functions.html#bool

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.algorithms.coloring.is_vertex_coloring

is_vertex_coloring(G, coloring)
Determines whether the given coloring is a vertex coloring of graph G.

Parameters

• G (NetworkX graph) – The graph on which the vertex coloring is applied.

• coloring (dict) – A coloring of the nodes of G. Should be a dict of the form {node:
color, . . . }.

Returns is_vertex_coloring – True if the given coloring defines a vertex coloring; that is, no two
adjacent vertices share a color.

Return type bool

Example

This example colors checks two colorings for a graph, G, of a single Chimera unit cell. The first uses one
color (0) for the four horizontal qubits and another (1) for the four vertical qubits, in which case there are no
adjacencies; the second coloring swaps the color of one node.

>>> G = dnx.chimera_graph(1,1,4)
>>> colors = {0: 0, 1: 0, 2: 0, 3: 0, 4: 1, 5: 1, 6: 1, 7: 1}
>>> dnx.is_vertex_coloring(G, colors)
True
>>> colors[4]=0
>>> dnx.is_vertex_coloring(G, colors)
False

dwave_networkx.algorithms.coloring.min_vertex_color

min_vertex_color(G, sampler=None, chromatic_lb=None, chromatic_ub=None, **sampler_args)
Returns an approximate minimum vertex coloring.

Vertex coloring is the problem of assigning a color to the vertices of a graph in a way that no adjacent vertices
have the same color. A minimum vertex coloring is the problem of solving the vertex coloring problem using
the smallest number of colors.

Defines a QUBO [DWMP] with ground states corresponding to minimum vertex colorings and uses the sampler
to sample from it.

Parameters

• G (NetworkX graph) – The graph on which to find a minimum vertex coloring.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• chromatic_lb (int, optional) – A lower bound on the chromatic number. If one
is not provided, a bound is calulcated.

12 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

• chromatic_ub (int, optional) – An upper bound on the chromatic number. If one
is not provided, a bound is calculated.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns coloring – A coloring for each vertex in G such that no adjacent nodes share the same
color. A dict of the form {node: color, . . . }

Return type dict

References

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

dwave_networkx.algorithms.coloring.min_vertex_color_qubo

min_vertex_color_qubo(G, chromatic_lb=None, chromatic_ub=None)
Return a QUBO with ground states corresponding to a minimum vertex coloring.

Vertex coloring is the problem of assigning a color to the vertices of a graph in a way that no adjacent vertices
have the same color. A minimum vertex coloring is the problem of solving the vertex coloring problem using
the smallest number of colors.

Defines a QUBO [DWMP] with ground states corresponding to minimum vertex colorings and uses the sampler
to sample from it.

Parameters

• G (NetworkX graph) – The graph on which to find a minimum vertex coloring.

• chromatic_lb (int, optional) – A lower bound on the chromatic number. If one
is not provided, a bound is calulcated.

• chromatic_ub (int, optional) – An upper bound on the chromatic number. If one
is not provided, a bound is calculated.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns QUBO – The QUBO with ground states corresponding to minimum colorings of the graph.
The QUBO variables are labelled (v, c) where v is a node in G and c is a color. In the ground
state of the QUBO, a variable (v, c) has value 1 if v should be colored c in a valid coloring.

Return type dict

dwave_networkx.algorithms.coloring.vertex_color

vertex_color(G, colors, sampler=None, **sampler_args)
Returns an approximate vertex coloring.

Vertex coloring is the problem of assigning a color to the vertices of a graph in a way that no adjacent vertices
have the same color.

Defines a QUBO [DWMP] with ground states corresponding to valid vertex colorings and uses the sampler to
sample from it.

Parameters

3.1. Documentation 13

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

• G (NetworkX graph) – The graph on which to find a minimum vertex coloring.

• colors (int/sequence) – The colors. If an int, the colors are labelled [0, n). The
number of colors must be greater or equal to the chromatic number of the graph.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns coloring – A coloring for each vertex in G such that no adjacent nodes share the same
color. A dict of the form {node: color, . . . }

Return type dict

References

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

dwave_networkx.algorithms.coloring.vertex_color_qubo

vertex_color_qubo(G, colors)
Return the QUBO with ground states corresponding to a vertex coloring.

If V is the set of nodes, E is the set of edges and C is the set of colors the resulting qubo will have:

• |𝑉 | * |𝐶| variables/nodes

• |𝑉 | * |𝐶| * (|𝐶| − 1)/2 + |𝐸| * |𝐶| interactions/edges

The QUBO has ground energy −|𝑉 | and an infeasible gap of 1.

Parameters

• G (NetworkX graph) – The graph on which to find a minimum vertex coloring.

• colors (int/sequence) – The colors. If an int, the colors are labelled [0, n). The
number of colors must be greater or equal to the chromatic number of the graph.

Returns QUBO – The QUBO with ground states corresponding to valid colorings of the graph. The
QUBO variables are labelled (v, c) where v is a node in G and c is a color. In the ground state of
the QUBO, a variable (v, c) has value 1 if v should be colored c in a valid coloring.

Return type dict

Cover

Vertex covering is the problem of finding a set of vertices such that all the edges of the graph are incident to at least
one of the vertices in the set.

14 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

Fig. 2: Cover for a Chimera unit cell: the nodes of both the blue set of vertices (the horizontal tile of the Chimera unit
cell) and the red set (vertical tile) connect to all 16 edges of the graph.

min_weighted_vertex_cover(G[, weight, . . .]) Returns an approximate minimum weighted vertex
cover.

min_vertex_cover(G[, sampler, lagrange]) Returns an approximate minimum vertex cover.
is_vertex_cover(G, vertex_cover) Determines whether the given set of vertices is a vertex

cover of graph G.

dwave_networkx.algorithms.cover.min_weighted_vertex_cover

min_weighted_vertex_cover(G, weight=None, sampler=None, lagrange=2.0, **sampler_args)
Returns an approximate minimum weighted vertex cover.

Defines a QUBO with ground states corresponding to a minimum weighted vertex cover and uses the sampler
to sample from it.

A vertex cover is a set of vertices such that each edge of the graph is incident with at least one vertex in the set.
A minimum weighted vertex cover is the vertex cover of minimum total node weight.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default None)) – If None, every node has equal
weight. If a string, use this node attribute as the node weight. A node without this attribute
is assumed to have max weight.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• lagrange (optional (default 2)) – Lagrange parameter to weight constraints
versus objective.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns vertex_cover – List of nodes that the form a the minimum weighted vertex cover, as deter-
mined by the given sampler.

Return type list

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

https://en.wikipedia.org/wiki/Vertex_cover

https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

References

Based on the formulation presented in [AL]

3.1. Documentation 15

https://docs.python.org/3/library/stdtypes.html#list
https://en.wikipedia.org/wiki/Vertex_cover
https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.algorithms.cover.min_vertex_cover

min_vertex_cover(G, sampler=None, lagrange=2.0, **sampler_args)
Returns an approximate minimum vertex cover.

Defines a QUBO with ground states corresponding to a minimum vertex cover and uses the sampler to sample
from it.

A vertex cover is a set of vertices such that each edge of the graph is incident with at least one vertex in the set.
A minimum vertex cover is the vertex cover of smallest size.

Parameters

• G (NetworkX graph) – The graph on which to find a minimum vertex cover.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• lagrange (optional (default 2)) – Lagrange parameter to weight constraints
versus objective.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns vertex_cover – List of nodes that form a minimum vertex cover, as determined by the given
sampler.

Return type list

Examples

This example uses a sampler from dimod to find a minimum vertex cover for a Chimera unit cell. Both the
horizontal (vertices 0,1,2,3) and vertical (vertices 4,5,6,7) tiles connect to all 16 edges, so repeated executions
can return either set.

>>> import dwave_networkx as dnx
>>> import dimod
>>> sampler = dimod.ExactSolver() # small testing sampler
>>> G = dnx.chimera_graph(1, 1, 4)
>>> G.remove_node(7) # to give a unique solution
>>> dnx.min_vertex_cover(G, sampler, lagrange=2.0)
[4, 5, 6]

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

References

https://en.wikipedia.org/wiki/Vertex_cover

https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

16 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#list
https://github.com/dwavesystems/dimod
https://en.wikipedia.org/wiki/Vertex_cover
https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.algorithms.cover.is_vertex_cover

is_vertex_cover(G, vertex_cover)
Determines whether the given set of vertices is a vertex cover of graph G.

A vertex cover is a set of vertices such that each edge of the graph is incident with at least one vertex in the set.

Parameters

• G (NetworkX graph) – The graph on which to check the vertex cover.

• vertex_cover – Iterable of nodes.

Returns is_cover – True if the given iterable forms a vertex cover.

Return type bool

Examples

This example checks two covers for a graph, G, of a single Chimera unit cell. The first uses the set of the four
horizontal qubits, which do constitute a cover; the second set removes one node.

>>> import dwave_networkx as dnx
>>> G = dnx.chimera_graph(1, 1, 4)
>>> cover = [0, 1, 2, 3]
>>> dnx.is_vertex_cover(G,cover)
True
>>> cover = [0, 1, 2]
>>> dnx.is_vertex_cover(G,cover)
False

Elimination Ordering

Many algorithms for NP-hard problems are exponential in treewidth. However, finding a lower bound on treewidth
is in itself NP-complete. [GD] describes a branch-and-bound algorithm for computing the treewidth of an undirected
graph by searching in the space of perfect elimination ordering of vertices of the graph.

A clique of a graph is a fully-connected subset of vertices; that is, every pair of vertices in the clique share an edge. A
simplicial vertex is one whose neighborhood induces a clique. A perfect elimination ordering is an ordering of vertices
1..𝑛 such that any vertex 𝑖 is simplicial for the subset of vertices 𝑖..𝑛.

chimera_elimination_order(m[, n, t, coordi-
nates])

Provides a variable elimination order for a Chimera
graph.

elimination_order_width(G, order) Calculates the width of the tree decomposition induced
by a variable elimination order.

is_almost_simplicial(G, n) Determines whether a node n in G is almost simplicial.
is_simplicial(G, n) Determines whether a node n in G is simplicial.
max_cardinality_heuristic(G) Computes an upper bound on the treewidth of graph G

based on the max-cardinality heuristic for the elimina-
tion ordering.

minor_min_width(G) Computes a lower bound for the treewidth of graph G.
min_fill_heuristic(G) Computes an upper bound on the treewidth of graph G

based on the min-fill heuristic for the elimination order-
ing.

Continued on next page

3.1. Documentation 17

https://docs.python.org/3/library/functions.html#bool

DWaveNetworkX Documentation, Release 0.8.13

Table 5 – continued from previous page
min_width_heuristic(G) Computes an upper bound on the treewidth of graph G

based on the min-width heuristic for the elimination or-
dering.

pegasus_elimination_order(n[, coordinates]) Provides a variable elimination order for the Pegasus
graph.

treewidth_branch_and_bound(G[, . . .]) Computes the treewidth of graph G and a corresponding
perfect elimination ordering.

dwave_networkx.algorithms.elimination_ordering.chimera_elimination_order

chimera_elimination_order(m, n=None, t=4, coordinates=False)
Provides a variable elimination order for a Chimera graph.

A graph defined by chimera_graph(m,n,t) has treewidth 𝑚𝑎𝑥(𝑚,𝑛)* 𝑡. This function outputs a variable
elimination order inducing a tree decomposition of that width.

Parameters

• m (int) – Number of rows in the Chimera lattice.

• n (int (optional, default m)) – Number of columns in the Chimera lattice.

• t (int (optional, default 4)) – Size of the shore within each Chimera tile.

• bool (optional, default False) (coordinates) – If True, the elimination
order is given in terms of 4-term Chimera coordinates, otherwise given in linear indices.

Returns order – An elimination order that induces the treewidth of chimera_graph(m,n,t).

Return type list

Examples

>>> G = dnx.chimera_elimination_order(1, 1, 4) # a single Chimera tile

dwave_networkx.algorithms.elimination_ordering.elimination_order_width

elimination_order_width(G, order)
Calculates the width of the tree decomposition induced by a variable elimination order.

Parameters

• G (NetworkX graph) – The graph on which to compute the width of the tree decompo-
sition.

• order (list) – The elimination order. Must be a list of all of the variables in G.

Returns treewidth – The width of the tree decomposition induced by order.

Return type int

Examples

This example computes the width of the tree decomposition for the 𝐾4 complete graph induced by an elimination
order found through the min-width heuristic.

18 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

>>> K_4 = nx.complete_graph(4)
>>> tw, order = dnx.min_width_heuristic(K_4)
>>> print(tw)
3
>>> dnx.elimination_order_width(K_4, order)
3

dwave_networkx.algorithms.elimination_ordering.is_almost_simplicial

is_almost_simplicial(G, n)
Determines whether a node n in G is almost simplicial.

Parameters

• G (NetworkX graph) – The graph on which to check whether node n is almost simplicial.

• n (node) – A node in graph G.

Returns is_almost_simplicial – True if all but one of its neighbors induce a clique

Return type bool

Examples

This example checks whether node 0 is simplicial or almost simplicial for a 𝐾5 complete graph with one edge
removed.

>>> K_5 = nx.complete_graph(5)
>>> K_5.remove_edge(1,3)
>>> dnx.is_simplicial(K_5, 0)
False
>>> dnx.is_almost_simplicial(K_5, 0)
True

dwave_networkx.algorithms.elimination_ordering.is_simplicial

is_simplicial(G, n)
Determines whether a node n in G is simplicial.

Parameters

• G (NetworkX graph) – The graph on which to check whether node n is simplicial.

• n (node) – A node in graph G.

Returns is_simplicial – True if its neighbors form a clique.

Return type bool

Examples

This example checks whether node 0 is simplicial for two graphs: G, a single Chimera unit cell, which is
bipartite, and K_5, the 𝐾5 complete graph.

3.1. Documentation 19

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

DWaveNetworkX Documentation, Release 0.8.13

>>> G = dnx.chimera_graph(1, 1, 4)
>>> K_5 = nx.complete_graph(5)
>>> dnx.is_simplicial(G, 0)
False
>>> dnx.is_simplicial(K_5, 0)
True

dwave_networkx.algorithms.elimination_ordering.max_cardinality_heuristic

max_cardinality_heuristic(G)
Computes an upper bound on the treewidth of graph G based on the max-cardinality heuristic for the elimination
ordering.

Parameters G (NetworkX graph) – The graph on which to compute an upper bound for the
treewidth.

Returns

• treewidth_upper_bound (int) – An upper bound on the treewidth of the graph G.

• order (list) – An elimination order that induces the treewidth.

Examples

This example computes an upper bound for the treewidth of the 𝐾4 complete graph.

>>> K_4 = nx.complete_graph(4)
>>> tw, order = dnx.max_cardinality_heuristic(K_4)

References

Based on the algorithm presented in [GD]

dwave_networkx.algorithms.elimination_ordering.minor_min_width

minor_min_width(G)
Computes a lower bound for the treewidth of graph G.

Parameters G (NetworkX graph) – The graph on which to compute a lower bound on the
treewidth.

Returns lb – A lower bound on the treewidth.

Return type int

Examples

This example computes a lower bound for the treewidth of the 𝐾7 complete graph.

>>> K_7 = nx.complete_graph(7)
>>> dnx.minor_min_width(K_7)
6

20 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

References

Based on the algorithm presented in [GD]

dwave_networkx.algorithms.elimination_ordering.min_fill_heuristic

min_fill_heuristic(G)
Computes an upper bound on the treewidth of graph G based on the min-fill heuristic for the elimination order-
ing.

Parameters G (NetworkX graph) – The graph on which to compute an upper bound for the
treewidth.

Returns

• treewidth_upper_bound (int) – An upper bound on the treewidth of the graph G.

• order (list) – An elimination order that induces the treewidth.

Examples

This example computes an upper bound for the treewidth of the 𝐾4 complete graph.

>>> K_4 = nx.complete_graph(4)
>>> tw, order = dnx.min_fill_heuristic(K_4)

References

Based on the algorithm presented in [GD]

dwave_networkx.algorithms.elimination_ordering.min_width_heuristic

min_width_heuristic(G)
Computes an upper bound on the treewidth of graph G based on the min-width heuristic for the elimination
ordering.

Parameters G (NetworkX graph) – The graph on which to compute an upper bound for the
treewidth.

Returns

• treewidth_upper_bound (int) – An upper bound on the treewidth of the graph G.

• order (list) – An elimination order that induces the treewidth.

Examples

This example computes an upper bound for the treewidth of the 𝐾4 complete graph.

>>> K_4 = nx.complete_graph(4)
>>> tw, order = dnx.min_width_heuristic(K_4)

3.1. Documentation 21

DWaveNetworkX Documentation, Release 0.8.13

References

Based on the algorithm presented in [GD]

dwave_networkx.algorithms.elimination_ordering.pegasus_elimination_order

pegasus_elimination_order(n, coordinates=False)
Provides a variable elimination order for the Pegasus graph.

The treewidth of a Pegasus graph pegasus_graph(n) is lower-bounded by 12𝑛− 11 and upper bounded by
12𝑛− 4 [BBRR] .

Simple pegasus variable elimination order rules:

• eliminate vertical qubits, one column at a time

• eliminate horizontal qubits in each column once their adjacent vertical qubits have been eliminated

Parameters

• n (int) – The size parameter for the Pegasus lattice.

• coordinates (bool, optional (default False)) – If True, the elimination
order is given in terms of 4-term Pegasus coordinates, otherwise given in linear indices.

Returns order – An elimination order that provides an upper bound on the treewidth.

Return type list

dwave_networkx.algorithms.elimination_ordering.treewidth_branch_and_bound

treewidth_branch_and_bound(G, elimination_order=None, treewidth_upperbound=None)
Computes the treewidth of graph G and a corresponding perfect elimination ordering.

Algorithm based on [GD].

Parameters

• G (NetworkX graph) – The graph on which to compute the treewidth and perfect elimi-
nation ordering.

• elimination_order (list (optional, Default None)) – An elimination
order used as an initial best-known order. If a good order is provided, it may speed up
computation. If not provided, the initial order is generated using the min-fill heuristic.

• treewidth_upperbound (int (optional, Default None)) – An upper
bound on the treewidth. Note that using this parameter can result in no returned order.

Returns

• treewidth (int) – The treewidth of graph G.

• order (list) – An elimination order that induces the treewidth.

Examples

This example computes the treewidth for the 𝐾7 complete graph using an optionally provided elimination order
(a sequential ordering of the nodes, arbitrally chosen).

22 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

>>> K_7 = nx.complete_graph(7)
>>> dnx.treewidth_branch_and_bound(K_7, [0, 1, 2, 3, 4, 5, 6])
(6, [0, 1, 2, 3, 4, 5, 6])

References

Based on the algorithm presented in [GD]

References

Markov Networks

sample_markov_network(MN[, sampler, . . .]) Samples from a markov network using the provided
sampler.

markov_network_bqm(MN) Construct a binary quadratic model for a markov net-
work.

dwave_networkx.algorithms.markov.sample_markov_network

sample_markov_network(MN, sampler=None, fixed_variables=None, return_sampleset=False, **sam-
pler_args)

Samples from a markov network using the provided sampler.

Parameters

• G (NetworkX graph) – A Markov Network as returned by markov_network()

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• fixed_variables (dict) – A dictionary of variable assignments to be fixed in the
markov network.

• return_sampleset (bool (optional, default=False)) – If True, returns a
dimod.SampleSet rather than a list of samples.

• **sampler_args – Additional keyword parameters are passed to the sampler.

Returns samples – A list of samples ordered from low-to-high energy or a sample set.

Return type list[dict]/dimod.SampleSet

Examples

>>> import dimod
...
>>> potentials = {('a', 'b'): {(0, 0): -1,
... (0, 1): .5,

(continues on next page)

3.1. Documentation 23

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/sampleset.html#dimod.SampleSet
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/sampleset.html#dimod.SampleSet

DWaveNetworkX Documentation, Release 0.8.13

(continued from previous page)

... (1, 0): .5,

... (1, 1): 2}}
>>> MN = dnx.markov_network(potentials)
>>> sampler = dimod.ExactSolver()
>>> samples = dnx.sample_markov_network(MN, sampler)
>>> samples[0] # doctest: +SKIP
{'a': 0, 'b': 0}

>>> import dimod
...
>>> potentials = {('a', 'b'): {(0, 0): -1,
... (0, 1): .5,
... (1, 0): .5,
... (1, 1): 2}}
>>> MN = dnx.markov_network(potentials)
>>> sampler = dimod.ExactSolver()
>>> samples = dnx.sample_markov_network(MN, sampler, return_sampleset=True)
>>> samples.first # doctest: +SKIP
Sample(sample={'a': 0, 'b': 0}, energy=-1.0, num_occurrences=1)

>>> import dimod
...
>>> potentials = {('a', 'b'): {(0, 0): -1,
... (0, 1): .5,
... (1, 0): .5,
... (1, 1): 2},
... ('b', 'c'): {(0, 0): -9,
... (0, 1): 1.2,
... (1, 0): 7.2,
... (1, 1): 5}}
>>> MN = dnx.markov_network(potentials)
>>> sampler = dimod.ExactSolver()
>>> samples = dnx.sample_markov_network(MN, sampler, fixed_variables={'b': 0})
>>> samples[0] # doctest: +SKIP
{'a': 0, 'c': 0, 'b': 0}

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

dwave_networkx.algorithms.markov.markov_network_bqm

markov_network_bqm(MN)
Construct a binary quadratic model for a markov network.

Parameters G (NetworkX graph) – A Markov Network as returned by markov_network()

Returns bqm – A binary quadratic model.

Return type dimod.BinaryQuadraticModel

24 Chapter 3. Contributing

DWaveNetworkX Documentation, Release 0.8.13

Matching

A matching is a subset of graph edges in which no vertex occurs more than once.

Fig. 3: A matching for a Chimera unit cell: no vertex is incident to more than one edge in the set of blue edges

matching_bqm(G) Find a binary quadratic model for the graph’s match-
ings.

maximal_matching_bqm(G[, lagrange]) Find a binary quadratic model for the graph’s maximal
matchings.

min_maximal_matching_bqm(G[, . . .]) Find a binary quadratic model for the graph’s minimum
maximal matchings.

min_maximal_matching(G[, sampler]) Returns an approximate minimum maximal matching.

dwave_networkx.algorithms.matching.matching_bqm

matching_bqm(G)
Find a binary quadratic model for the graph’s matchings.

A matching is a subset of edges in which no node occurs more than once. This function returns a binary quadratic
model (BQM) with ground states corresponding to the possible matchings of G.

Finding valid matchings can be done in polynomial time, so finding matching with BQMs is generally inefficient.
This BQM may be useful when combined with other constraints and objectives.

Parameters G (NetworkX graph) – The graph on which to find a matching.

Returns bqm – A binary quadratic model with ground states corresponding to a matching. The
variables of the BQM are the edges of G as frozensets. The BQM’s ground state energy is 0 by
construction. The energy of the first excited state is 1.

Return type dimod.BinaryQuadraticModel

dwave_networkx.algorithms.matching.maximal_matching_bqm

maximal_matching_bqm(G, lagrange=None)
Find a binary quadratic model for the graph’s maximal matchings.

A matching is a subset of edges in which no node occurs more than once. A maximal matching is one in which
no edges from G can be added without violating the matching rule. This function returns a binary quadratic

3.1. Documentation 25

DWaveNetworkX Documentation, Release 0.8.13

model (BQM) with ground states corresponding to the possible maximal matchings of G.

Finding maximal matchings can be done in polynomial time, so finding maximal matching with BQMs is gen-
erally inefficient. This BQM may be useful when combined with other constraints and objectives.

Parameters

• G (NetworkX graph) – The graph on which to find a maximal matching.

• lagrange (float (optional)) – The Lagrange multiplier for the matching con-
straint. Should be positive and greater than max_degree - 2. Defaults to 1.25 * (max_degree
- 2).

Returns bqm – A binary quadratic model with ground states corresponding to a maximal matching.
The variables of the BQM are the edges of G as frozensets. The BQM’s ground state energy is
0 by construction.

Return type dimod.BinaryQuadraticModel

dwave_networkx.algorithms.matching.min_maximal_matching_bqm

min_maximal_matching_bqm(G, maximal_lagrange=2, matching_lagrange=None)
Find a binary quadratic model for the graph’s minimum maximal matchings.

A matching is a subset of edges in which no node occurs more than once. A maximal matching is one in which
no edges from G can be added without violating the matching rule. A minimum maximal matching is a maximal
matching that contains the smallest possible number of edges. This function returns a binary quadratic model
(BQM) with ground states corresponding to the possible maximal matchings of G.

Parameters

• G (NetworkX graph) – The graph on which to find a minimum maximal matching.

• maximal_lagrange (float (optional, default=2)) – The Lagrange multi-
plier for the maximal constraint. Should be greater than 1.

• matching_lagrange (float (optional)) – The Lagrange multiplier for the
matching constraint. Should be positive and greater than maximal_lagrange * max_degree
- 2. Defaults to 1.25 * (maximal_lagrange * max_degree - 2).

Returns bqm – A binary quadratic model with ground states corresponding to a minimum maximal
matching. The variables of the BQM are the edges of G as frozensets.

Return type dimod.BinaryQuadraticModel

dwave_networkx.algorithms.matching.min_maximal_matching

min_maximal_matching(G, sampler=None, **sampler_args)
Returns an approximate minimum maximal matching.

Defines a QUBO with ground states corresponding to a minimum maximal matching and uses the sampler to
sample from it.

A matching is a subset of edges in which no node occurs more than once. A maximal matching is one in
which no edges from G can be added without violating the matching rule. A minimum maximal matching is the
smallest maximal matching for G.

Parameters

• G (NetworkX graph) – The graph on which to find a minimum maximal matching.

26 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DWaveNetworkX Documentation, Release 0.8.13

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns matching – A minimum maximal matching of the graph.

Return type set

Example

This example uses a sampler from dimod to find a minimum maximal matching for a Chimera unit cell.

>>> import dimod
>>> sampler = dimod.ExactSolver()
>>> G = dnx.chimera_graph(1, 1, 4)
>>> matching = dnx.min_maximal_matching(G, sampler)

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

References

Matching on Wikipedia

QUBO on Wikipedia

Maximum Cut

A maximum cut is a subset of a graph’s vertices such that the number of edges between this subset and the remaining
vertices is as large as possible.

maximum_cut(G[, sampler]) Returns an approximate maximum cut.
weighted_maximum_cut(G[, sampler]) Returns an approximate weighted maximum cut.

dwave_networkx.algorithms.max_cut.maximum_cut

maximum_cut(G, sampler=None, **sampler_args)
Returns an approximate maximum cut.

Defines an Ising problem with ground states corresponding to a maximum cut and uses the sampler to sample
from it.

A maximum cut is a subset S of the vertices of G such that the number of edges between S and the complemen-
tary subset is as large as possible.

Parameters

3.1. Documentation 27

https://docs.python.org/3/library/stdtypes.html#set
https://github.com/dwavesystems/dimod
https://w.wiki/r9s
https://w.wiki/r9t

DWaveNetworkX Documentation, Release 0.8.13

Fig. 4: Maximum cut for a Chimera unit cell: the blue line around the subset of nodes {4, 5, 6, 7} cuts 16 edges;
adding or removing a node decreases the number of edges between the two complementary subsets of the graph.

• G (NetworkX graph) – The graph on which to find a maximum cut.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns S – A maximum cut of G.

Return type set

Example

This example uses a sampler from dimod to find a maximum cut for a graph of a Chimera unit cell created using
the chimera_graph() function.

>>> import dimod
...
>>> sampler = dimod.SimulatedAnnealingSampler()
>>> G = dnx.chimera_graph(1, 1, 4)
>>> cut = dnx.maximum_cut(G, sampler)

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

28 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#set
https://github.com/dwavesystems/dimod

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.algorithms.max_cut.weighted_maximum_cut

weighted_maximum_cut(G, sampler=None, **sampler_args)
Returns an approximate weighted maximum cut.

Defines an Ising problem with ground states corresponding to a weighted maximum cut and uses the sampler to
sample from it.

A weighted maximum cut is a subset S of the vertices of G that maximizes the sum of the edge weights between
S and its complementary subset.

Parameters

• G (NetworkX graph) – The graph on which to find a weighted maximum cut. Each edge
in G should have a numeric weight attribute.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns S – A maximum cut of G.

Return type set

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

Independent Set

An independent set is a set of a graph’s vertices with no edge connecting any of its member pairs.

Fig. 5: Independent sets for a Chimera unit cell: the nodes of both the blue set of vertices (the horizontal tile of the
Chimera unit cell) and the red set (vertical tile) are independent sets of the graph, with no blue node adjacent to another
blue node and likewise for red nodes.

3.1. Documentation 29

https://docs.python.org/3/library/stdtypes.html#set

DWaveNetworkX Documentation, Release 0.8.13

maximum_weighted_independent_set(G[,
. . .])

Returns an approximate maximum weighted indepen-
dent set.

maximum_independent_set(G[, sampler, la-
grange])

Returns an approximate maximum independent set.

is_independent_set(G, indep_nodes) Determines whether the given nodes form an indepen-
dent set.

dwave_networkx.maximum_weighted_independent_set

maximum_weighted_independent_set(G, weight=None, sampler=None, lagrange=2.0, **sam-
pler_args)

Returns an approximate maximum weighted independent set.

Defines a QUBO with ground states corresponding to a maximum weighted independent set and uses the sampler
to sample from it.

An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A
maximum independent set is an independent set of maximum total node weight.

Parameters

• G (NetworkX graph) – The graph on which to find a maximum cut weighted indepen-
dent set.

• weight (string, optional (default None)) – If None, every node has equal
weight. If a string, use this node attribute as the node weight. A node without this attribute
is assumed to have max weight.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• lagrange (optional (default 2)) – Lagrange parameter to weight constraints (no
edges within set) versus objective (largest set possible).

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns indep_nodes – List of nodes that form a maximum weighted independent set, as deter-
mined by the given sampler.

Return type list

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

References

Independent Set on Wikipedia

QUBO on Wikipedia

30 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#list
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.maximum_independent_set

maximum_independent_set(G, sampler=None, lagrange=2.0, **sampler_args)
Returns an approximate maximum independent set.

Defines a QUBO with ground states corresponding to a maximum independent set and uses the sampler to
sample from it.

An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A
maximum independent set is an independent set of largest possible size.

Parameters

• G (NetworkX graph) – The graph on which to find a maximum cut independent set.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• lagrange (optional (default 2)) – Lagrange parameter to weight constraints (no
edges within set) versus objective (largest set possible).

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns indep_nodes – List of nodes that form a maximum independent set, as determined by the
given sampler.

Return type list

Example

This example uses a sampler from dimod to find a maximum independent set for a graph of a Chimera unit cell
created using the chimera_graph() function.

>>> import dimod
>>> sampler = dimod.SimulatedAnnealingSampler()
>>> G = dnx.chimera_graph(1, 1, 4)
>>> indep_nodes = dnx.maximum_independent_set(G, sampler)

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

References

Independent Set on Wikipedia

QUBO on Wikipedia

3.1. Documentation 31

https://docs.python.org/3/library/stdtypes.html#list
https://github.com/dwavesystems/dimod
https://en.wikipedia.org/wiki/Independent_set_(graph_theory)
https://en.wikipedia.org/wiki/Quadratic_unconstrained_binary_optimization

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.is_independent_set

is_independent_set(G, indep_nodes)
Determines whether the given nodes form an independent set.

An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges.

Parameters

• G (NetworkX graph) – The graph on which to check the independent set.

• indep_nodes (list) – List of nodes that form a maximum independent set, as deter-
mined by the given sampler.

Returns is_independent – True if indep_nodes form an independent set.

Return type bool

Example

This example checks two sets of nodes, both derived from a single Chimera unit cell, for an independent set.
The first set is the horizontal tile’s nodes; the second has nodes from the horizontal and verical tiles.

>>> import dwave_networkx as dnx
>>> G = dnx.chimera_graph(1, 1, 4)
>>> dnx.is_independent_set(G, [0, 1, 2, 3])
True
>>> dnx.is_independent_set(G, [0, 4])
False

Helper Functions

maximum_weighted_independent_set_qubo(G[,
. . .])

Return the QUBO with ground states corresponding to
a maximum weighted independent set.

dwave_networkx.algorithms.independent_set.maximum_weighted_independent_set_qubo

maximum_weighted_independent_set_qubo(G, weight=None, lagrange=2.0)
Return the QUBO with ground states corresponding to a maximum weighted independent set.

Parameters

• G (NetworkX graph) –

• weight (string, optional (default None)) – If None, every node has equal
weight. If a string, use this node attribute as the node weight. A node without this attribute
is assumed to have max weight.

• lagrange (optional (default 2)) – Lagrange parameter to weight constraints (no
edges within set) versus objective (largest set possible).

Returns QUBO – The QUBO with ground states corresponding to a maximum weighted indepen-
dent set.

Return type dict

32 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

Examples

>>> from dwave_networkx.algorithms.independent_set import maximum_weighted_
→˓independent_set_qubo
...
>>> G = nx.path_graph(3)
>>> Q = maximum_weighted_independent_set_qubo(G, weight='weight', lagrange=2.0)
>>> Q[(0, 0)]
-1.0
>>> Q[(1, 1)]
-1.0
>>> Q[(0, 1)]
2.0

Partitioning

A k-partition consists of k disjoint and equally sized subsets of a graph’s vertices such that the total number of edges
between nodes in distinct subsets is as small as possible.

Fig. 6: A 2-partition for a simple graph: the nodes in blue are in the ‘0’ subset, and the nodes in red are in the ‘1’
subset. There are no other arrangements with fewer edges between two equally sized subsets.

partition(G[, num_partitions, sampler]) Returns an approximate k-partition of G.

dwave_networkx.algorithms.partition.partition

partition(G, num_partitions=2, sampler=None, **sampler_args)
Returns an approximate k-partition of G.

Defines an CQM with ground states corresponding to a balanced k-partition of G and uses the sampler to sample
from it. A k-partition is a collection of k subsets of the vertices of G such that each vertex is in exactly one subset,
and the number of edges between vertices in different subsets is as small as possible. If G is a weighted graph,
the sum of weights over those edges are minimized.

Parameters

3.1. Documentation 33

DWaveNetworkX Documentation, Release 0.8.13

• G (NetworkX graph) – The graph to partition.

• num_partitions (int, optional (default 2)) – The number of subsets in the
desired partition.

• sampler – A constrained quadratic model sampler. A sampler is a process that samples
from low energy states in models defined by an Ising equation or a Quadratic Model, with
or without constraints. The sampler is expected to have a ‘sample_cqm’ method. A sampler
is expected to return an iterable of samples, in order of increasing energy.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns node_partition – The partition as a dictionary mapping each node to subsets labelled as
integers 0, 1, 2, . . . num_partitions.

Return type dict

Example

This example uses a sampler from dimod to find a 2-partition for a graph of a Chimera unit cell created using
the chimera_graph() function.

>>> import dimod
>>> sampler = dimod.ExactCQMSolver()
>>> G = dnx.chimera_graph(1, 1, 4)
>>> partitions = dnx.partition(G, sampler=sampler)

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

Social

A signed social network graph is a graph whose signed edges represent friendly/hostile interactions between vertices.

structural_imbalance(S[, sampler]) Returns an approximate set of frustrated edges and a bi-
coloring.

structural_imbalance_ising(S) Construct the Ising problem to calculate the structural
imbalance of a signed social network.

dwave_networkx.algorithms.social.structural_imbalance

structural_imbalance(S, sampler=None, **sampler_args)
Returns an approximate set of frustrated edges and a bicoloring.

A signed social network graph is a graph whose signed edges represent friendly/hostile interactions between
nodes. A signed social network is considered balanced if it can be cleanly divided into two factions, where all
relations within a faction are friendly, and all relations between factions are hostile. The measure of imbalance
or frustration is the minimum number of edges that violate this rule.

Parameters

• S (NetworkX graph) – A social graph on which each edge has a ‘sign’ attribute with a

34 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://github.com/dwavesystems/dimod

DWaveNetworkX Documentation, Release 0.8.13

Fig. 7: A signed social graph for three nodes, where Eve and Bob are friendly with each other and hostile to Alice.
This network is balanced because it can be cleanly divided into two subsets, {Bob, Eve} and {Alice}, with friendly
relations within each subset and only hostile relations between the subsets.

3.1. Documentation 35

DWaveNetworkX Documentation, Release 0.8.13

numeric value.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrainted
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns

• frustrated_edges (dict) – A dictionary of the edges that violate the edge sign. The imbal-
ance of the network is the length of frustrated_edges.

• colors (dict) – A bicoloring of the nodes into two factions.

Raises ValueError – If any edge does not have a ‘sign’ attribute.

Examples

>>> import dimod
>>> sampler = dimod.ExactSolver()
>>> S = nx.Graph()
>>> S.add_edge('Alice', 'Bob', sign=1) # Alice and Bob are friendly
>>> S.add_edge('Alice', 'Eve', sign=-1) # Alice and Eve are hostile
>>> S.add_edge('Bob', 'Eve', sign=-1) # Bob and Eve are hostile
>>> frustrated_edges, colors = dnx.structural_imbalance(S, sampler)
>>> print(frustrated_edges)
{}
>>> print(colors) # doctest: +SKIP
{'Alice': 0, 'Bob': 0, 'Eve': 1}
>>> S.add_edge('Ted', 'Bob', sign=1) # Ted is friendly with all
>>> S.add_edge('Ted', 'Alice', sign=1)
>>> S.add_edge('Ted', 'Eve', sign=1)
>>> frustrated_edges, colors = dnx.structural_imbalance(S, sampler)
>>> print(frustrated_edges) # doctest: +SKIP
{('Ted', 'Eve'): {'sign': 1}}
>>> print(colors) # doctest: +SKIP
{'Bob': 1, 'Ted': 1, 'Alice': 1, 'Eve': 0}

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

References

Ising model on Wikipedia

dwave_networkx.algorithms.social.structural_imbalance_ising

structural_imbalance_ising(S)
Construct the Ising problem to calculate the structural imbalance of a signed social network.

36 Chapter 3. Contributing

https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Ising_model

DWaveNetworkX Documentation, Release 0.8.13

A signed social network graph is a graph whose signed edges represent friendly/hostile interactions between
nodes. A signed social network is considered balanced if it can be cleanly divided into two factions, where all
relations within a faction are friendly, and all relations between factions are hostile. The measure of imbalance
or frustration is the minimum number of edges that violate this rule.

Parameters S (NetworkX graph) – A social graph on which each edge has a ‘sign’ attribute
with a numeric value.

Returns

• h (dict) – The linear biases of the Ising problem. Each variable in the Ising problem represent
a node in the signed social network. The solution that minimized the Ising problem will
assign each variable a value, either -1 or 1. This bi-coloring defines the factions.

• J (dict) – The quadratic biases of the Ising problem.

Raises ValueError – If any edge does not have a ‘sign’ attribute.

Examples

>>> import dimod
>>> from dwave_networkx.algorithms.social import structural_imbalance_ising
...
>>> S = nx.Graph()
>>> S.add_edge('Alice', 'Bob', sign=1) # Alice and Bob are friendly
>>> S.add_edge('Alice', 'Eve', sign=-1) # Alice and Eve are hostile
>>> S.add_edge('Bob', 'Eve', sign=-1) # Bob and Eve are hostile
...
>>> h, J = structural_imbalance_ising(S)
>>> h # doctest: +SKIP
{'Alice': 0.0, 'Bob': 0.0, 'Eve': 0.0}
>>> J # doctest: +SKIP
{('Alice', 'Bob'): -1.0, ('Alice', 'Eve'): 1.0, ('Bob', 'Eve'): 1.0}

Traveling Salesperson

A traveling salesperson route is an ordering of the vertices in a complete weighted graph.

traveling_salesperson(G[, sampler, . . .]) Returns an approximate minimum traveling salesperson
route.

traveling_salesperson_qubo(G[, lagrange,
. . .])

Return the QUBO with ground states corresponding to
a minimum TSP route.

dwave_networkx.algorithms.tsp.traveling_salesperson

traveling_salesperson(G, sampler=None, lagrange=None, weight=’weight’, start=None, **sam-
pler_args)

Returns an approximate minimum traveling salesperson route.

Defines a QUBO with ground states corresponding to the minimum routes and uses the sampler to sample from
it.

A route is a cycle in the graph that reaches each node exactly once. A minimum route is a route with the smallest
total edge weight.

3.1. Documentation 37

https://docs.python.org/3/library/exceptions.html#ValueError

DWaveNetworkX Documentation, Release 0.8.13

Fig. 8: A traveling salesperson route of [2, 1, 0, 3].

Parameters

• G (NetworkX graph) – The graph on which to find a minimum traveling salesperson
route. This should be a complete graph with non-zero weights on every edge.

• sampler – A binary quadratic model sampler. A sampler is a process that samples from
low energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’
and ‘sample_ising’ method. A sampler is expected to return an iterable of samples, in
order of increasing energy. If no sampler is provided, one must be provided using the
set_default_sampler function.

• lagrange (number, optional (default None)) – Lagrange parameter to
weight constraints (visit every city once) versus objective (shortest distance route).

• weight (optional (default 'weight')) – The name of the edge attribute con-
taining the weight.

• start (node, optional) – If provided, the route will begin at start.

• sampler_args – Additional keyword parameters are passed to the sampler.

Returns route – List of nodes in order to be visited on a route

Return type list

Examples

38 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#list

DWaveNetworkX Documentation, Release 0.8.13

>>> import dimod
...
>>> G = nx.Graph()
>>> G.add_weighted_edges_from({(0, 1, .1), (0, 2, .5), (0, 3, .1), (1, 2, .1),
... (1, 3, .5), (2, 3, .1)})
>>> dnx.traveling_salesperson(G, dimod.ExactSolver(), start=0) # doctest: +SKIP
[0, 1, 2, 3]

Notes

Samplers by their nature may not return the optimal solution. This function does not attempt to confirm the
quality of the returned sample.

dwave_networkx.algorithms.tsp.traveling_salesperson_qubo

traveling_salesperson_qubo(G, lagrange=None, weight=’weight’, missing_edge_weight=None)
Return the QUBO with ground states corresponding to a minimum TSP route.

If |𝐺| is the number of nodes in the graph, the resulting qubo will have:

• |𝐺|2 variables/nodes

• 2|𝐺|2(|𝐺| − 1) interactions/edges

Parameters

• G (NetworkX graph) – A complete graph in which each edge has a attribute giving its
weight.

• lagrange (number, optional (default None)) – Lagrange parameter to
weight constraints (no edges within set) versus objective (largest set possible).

• weight (optional (default 'weight')) – The name of the edge attribute con-
taining the weight.

• missing_edge_weight (number, optional (default None)) – For bi-
directional graphs, the weight given to missing edges. If None is given (the default), missing
edges will be set to the sum of all weights.

Returns QUBO – The QUBO with ground states corresponding to a minimum travelling salesper-
son route. The QUBO variables are labelled (c, t) where c is a node in G and t is the time index.
For instance, if (‘a’, 0) is 1 in the ground state, that means the node ‘a’ is visted first.

Return type dict

Drawing

Tools to visualize topologies of D-Wave QPUs and weighted graph problems on them.

Note: Some functionality requires NumPy and/or Matplotlib.

3.1. Documentation 39

https://docs.python.org/3/library/stdtypes.html#dict
https://scipy.org
https://matplotlib.org

DWaveNetworkX Documentation, Release 0.8.13

Chimera Graph Functions

Tools to visualize Chimera lattices and weighted graph problems on them.

chimera_layout(G[, scale, center, dim]) Positions the nodes of graph G in a Chimera cross topol-
ogy.

draw_chimera(G, **kwargs) Draws graph G in a Chimera cross topology.

dwave_networkx.drawing.chimera_layout.chimera_layout

chimera_layout(G, scale=1.0, center=None, dim=2)
Positions the nodes of graph G in a Chimera cross topology.

NumPy (https://scipy.org) is required for this function.

Parameters

• G (NetworkX graph) – Should be a Chimera graph or a subgraph of a Chimera graph. If
every node in G has a chimera_index attribute, those are used to place the nodes. Otherwise
makes a best-effort attempt to find positions.

• scale (float (default 1.)) – Scale factor. When scale = 1, all positions fit within
[0, 1] on the x-axis and [-1, 0] on the y-axis.

• center (None or array (default None)) – Coordinates of the top left corner.

• dim (int (default 2)) – Number of dimensions. When dim > 2, all extra dimensions
are set to 0.

Returns pos – A dictionary of positions keyed by node.

Return type dict

Examples

>>> G = dnx.chimera_graph(1)
>>> pos = dnx.chimera_layout(G)

dwave_networkx.drawing.chimera_layout.draw_chimera

draw_chimera(G, **kwargs)
Draws graph G in a Chimera cross topology.

If linear_biases and/or quadratic_biases are provided, these are visualized on the plot.

Parameters

• G (NetworkX graph) – Should be a Chimera graph or a subgraph of a Chimera graph.

• linear_biases (dict (optional, default {})) – A dict of biases associated
with each node in G. Should be of form {node: bias, . . . }. Each bias should be numeric.

• quadratic_biases (dict (optional, default {})) – A dict of biases asso-
ciated with each edge in G. Should be of form {edge: bias, . . . }. Each bias should be
numeric. Self-loop edges (i.e., 𝑖 = 𝑗) are treated as linear biases.

40 Chapter 3. Contributing

https://scipy.org
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter which is not used by this
function. If linear_biases or quadratic_biases are provided, any provided node_color or
edge_color arguments are ignored.

Examples

>>> # Plot 2x2 Chimera unit cells
>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> G = dnx.chimera_graph(2, 2, 4)
>>> dnx.draw_chimera(G) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

Example

This example uses the chimera_layout() function to show the positions of nodes of a simple 5-node NetworkX
graph in a Chimera lattice. It then uses the chimera_graph() and draw_chimera() functions to display those
positions on a Chimera unit cell.

>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import matplotlib.pyplot as plt
>>> H = nx.Graph()
>>> H.add_nodes_from([0, 4, 5, 6, 7])
>>> H.add_edges_from([(0, 4), (0, 5), (0, 6), (0, 7)])
>>> pos=dnx.chimera_layout(H)
>>> pos
{0: array([0. , -0.5]),
4: array([0.5, 0.]),
5: array([0.5 , -0.25]),
6: array([0.5 , -0.75]),
7: array([0.5, -1.])}

>>> # Show graph H on a Chimera unit cell
>>> plt.ion()
>>> G=dnx.chimera_graph(1, 1, 4) # Draw a Chimera unit cell
>>> dnx.draw_chimera(G)
>>> dnx.draw_chimera(H, node_color='b', node_shape='*', style='dashed', edge_color='b
→˓', width=3)
>>> # matplotlib commands to add labels to graphic not shown

Pegasus Graph Functions

Tools to visualize Pegasus lattices and weighted graph problems on them.

draw_pegasus(G[, crosses]) Draws graph G in a Pegasus topology.
draw_pegasus_embedding(G, *args, **kwargs) Draws an embedding onto Pegasus graph G.
pegasus_layout(G[, scale, center, dim, crosses]) Positions the nodes of graph G in a Pegasus topology.
pegasus_node_placer_2d(G[, scale, center,
. . .])

Generates a function to convert Pegasus indices to plot-
table coordinates.

3.1. Documentation 41

DWaveNetworkX Documentation, Release 0.8.13

Fig. 9: Graph H (blue) overlaid on a Chimera unit cell (red nodes and black edges).

dwave_networkx.drawing.pegasus_layout.draw_pegasus

draw_pegasus(G, crosses=False, **kwargs)
Draws graph G in a Pegasus topology.

If linear_biases and/or quadratic_biases are provided, these are visualized on the plot.

Parameters

• G (NetworkX graph) – A Pegasus graph or a subgraph of a Pegasus graph, as produced
by the dwave_networkx.pegasus_graph() function.

• linear_biases (dict (optional, default {})) – Biases as a dict, of form
{node: bias, . . . }, where keys are nodes in G and biases are numeric.

• quadratic_biases (dict (optional, default {})) – Biases as a dict, of
form {edge: bias, . . . }, where keys are edges in G and biases are numeric. Self-loop edges
(i.e., 𝑖 = 𝑗) are treated as linear biases.

• crosses (boolean (optional, default False)) – If True, 𝐾4,4 subgraphs
are shown in a cross rather than L configuration. Ignored if G is defined with
nice_coordinates=True.

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter, which is not used by this
function. If linear_biases or quadratic_biases are provided, any provided
node_color or edge_color arguments are ignored.

Examples

This example plots a Pegasus graph with size parameter 2.

>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import matplotlib.pyplot as plt # doctest: +SKIP

(continues on next page)

42 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

(continued from previous page)

>>> G = dnx.pegasus_graph(2)
>>> dnx.draw_pegasus(G) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dwave_networkx.drawing.pegasus_layout.draw_pegasus_embedding

draw_pegasus_embedding(G, *args, **kwargs)
Draws an embedding onto Pegasus graph G.

Parameters

• G (NetworkX graph) – A Pegasus graph or a subgraph of a Pegasus graph, as produced
by the dwave_networkx.pegasus_graph() function.

• emb (dict) – Chains, as a dict of form {qubit: chain, . . . }, where qubits are nodes in G
and chains are iterables of qubit labels.

• embedded_graph (NetworkX graph (optional, default None)) – A
graph that contains all keys of emb as nodes. If specified, edges of G are considered
interactions if and only if (1) they exist between two chains of emb and (2) their keys are
connected by an edge in this graph. If given, only couplers between chains based on this
graph are displayed.

• interaction_edges (list (optional, default None)) – A list of edges
used as interactions. If given, only these couplers are displayed.

• show_labels (boolean (optional, default False)) – If True, each chain
in emb is labelled with its key.

• chain_color (dict (optional, default None)) – Colors as a dict of form
{node: rgba_color, . . . } associated with each key in emb, where colors are length-4 tuples
of floats between 0 and 1 inclusive. If None, each chain is assigned a different color.

• unused_color (tuple (optional, default (0.9,0.9,0.9,1.0))) –
Color for nodes of G that are not part of chains, and edges that are neither chain edges nor
interactions. If None, these nodes and edges are not shown.

• crosses (boolean (optional, default False)) – If True, 𝐾4,4 subgraphs
are shown in a cross rather than L configuration. Ignored if G is defined with
nice_coordinates=True.

• overlapped_embedding (boolean (optional, default False)) – If True,
chains in embmay overlap (contain the same vertices in G), and these overlaps are displayed
as concentric circles.

• kwargs (optional keywords) – See networkx.draw_networkx() for a description of
optional keywords, with the exception of the pos parameter, which is not used by this
function. If linear_biases or quadratic_biases are provided, any provided
node_color or edge_color arguments are ignored.

dwave_networkx.drawing.pegasus_layout.pegasus_layout

pegasus_layout(G, scale=1.0, center=None, dim=2, crosses=False)
Positions the nodes of graph G in a Pegasus topology.

NumPy is required for this function.

3.1. Documentation 43

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://scipy.org

DWaveNetworkX Documentation, Release 0.8.13

Parameters

• G (NetworkX graph) – A Pegasus graph or a subgraph of a Pegasus graph, as produced
by the dwave_networkx.pegasus_graph() function.

• scale (float (default 1.)) – Scale factor. A setting of scale = 1 fits all posi-
tions within [0, 1] on the x-axis and [-1, 0] on the y-axis.

• center (None or array (default None)) – Coordinates of the top left corner.

• dim (int (default 2)) – Number of dimensions. When dim > 2, all extra dimensions
are set to 0.

• crosses (boolean (optional, default False)) – If True, 𝐾4,4 subgraphs
are shown in a cross rather than L configuration. Ignored if G is defined with
nice_coordinates=True.

Returns pos – Positions as a dictionary keyed by node.

Return type dict

Examples

This example gives the positions of a Pegasus lattice of size 2.

>>> G = dnx.pegasus_graph(2)
>>> pos = dnx.pegasus_layout(G)

dwave_networkx.drawing.pegasus_layout.pegasus_node_placer_2d

pegasus_node_placer_2d(G, scale=1.0, center=None, dim=2, crosses=False)
Generates a function to convert Pegasus indices to plottable coordinates.

Parameters

• G (NetworkX graph) – A Pegasus graph or a subgraph of a Pegasus graph, as produced
by the dwave_networkx.pegasus_graph() function.

• scale (float (default 1.)) – Scale factor. A setting of scale = 1 fits all posi-
tions within [0, 1] on the x-axis and [-1, 0] on the y-axis.

• center (None or array (default None)) – Coordinates of the top left corner.

• dim (int (default 2)) – Number of dimensions. When dim > 2, all extra dimensions
are set to 0.

• crosses (boolean (optional, default False)) – If True, 𝐾4,4 subgraphs are
shown in a cross rather than L configuration.

Returns xy_coords – A function that maps a Pegasus index (u, w, k, z) in a Pegasus lattice to
plottable x,y coordinates.

Return type function

Example

This example uses the draw_pegasus() function to show the positions of nodes of a simple 5-node graph on a
small Pegasus lattice.

44 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

>>> import dwave_networkx as dnx
>>> import matplotlib.pyplot as plt
>>> G = dnx.pegasus_graph(2)
>>> H = dnx.pegasus_graph(2, node_list=[4, 40, 41, 42, 43],

edge_list=[(4, 40), (4, 41), (4, 42), (4, 43)])
>>> # Show graph H on a small Pegasus lattice
>>> plt.ion()
>>> # Show graph H on a small Pegasus lattice
>>> plt.ion()
>>> dnx.draw_pegasus(G, with_labels=True, crosses=True, node_color="Yellow")
>>> dnx.draw_pegasus(H, crosses=True, node_color='b', style='dashed',

edge_color='b', width=3)

Fig. 10: Graph H (blue) overlaid on a small Pegasus lattice(yellow nodes and black edges).

Zephyr Graph Functions

Tools to visualize Zephyr lattices and weighted graph problems on them.

draw_zephyr(G, **kwargs) Draws graph G in a Zephyr topology.
draw_zephyr_embedding(G, *args, **kwargs) Draws an embedding onto Zephyr graph G.
draw_zephyr_yield(G, **kwargs) Draws the given graph G with highlighted faults, ac-

cording to layout.
zephyr_layout(G[, scale, center, dim]) Positions the nodes of graph G in a Zephyr topology.

dwave_networkx.drawing.zephyr_layout.draw_zephyr

draw_zephyr(G, **kwargs)
Draws graph G in a Zephyr topology.

If linear_biases and/or quadratic_biases are provided, these are visualized on the plot.

Parameters

3.1. Documentation 45

DWaveNetworkX Documentation, Release 0.8.13

• G (NetworkX graph) – A Zephyr graph or a subgraph of a Zephyr graph, as produced
by the dwave_networkx.zephyr_graph() function.

• linear_biases (dict (optional, default {})) – Biases as a dict, of form
{node: bias, . . . }, where keys are nodes in G and biases are numeric.

• quadratic_biases (dict (optional, default {})) – Biases as a dict, of
form {edge: bias, . . . }, where keys are edges in G and biases are numeric. Self-loop edges
(i.e., 𝑖 = 𝑗) are treated as linear biases.

• kwargs (optional keywords) – See draw_networkx() for a description of op-
tional keywords, with the exception of the pos parameter, which is unsupported. If
the linear_biases or quadratic_biases parameters are provided, any provided
node_color or edge_color arguments are ignored.

Examples

This example plots a Zephyr graph with size parameter 2.

>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> G = dnx.zephyr_graph(2)
>>> dnx.draw_zephyr(G) # doctest: +SKIP
>>> plt.show() # doctest: +SKIP

dwave_networkx.drawing.zephyr_layout.draw_zephyr_embedding

draw_zephyr_embedding(G, *args, **kwargs)
Draws an embedding onto Zephyr graph G.

Parameters

• G (NetworkX graph) – A Zephyr graph or a subgraph of a Zephyr graph, as produced
by the dwave_networkx.zephyr_graph() function.

• emb (dict) – Minor-embedding as a dict of form {node: chain, . . . }, where node are
nodes in G and chain are iterables of qubit labels.

• embedded_graph (NetworkX graph (optional, default None)) – A
graph that contains all keys of emb as nodes. If specified, edges of G are considered
interactions if and only if (1) they exist between two chains of emb and (2) the keys of the
corresponding chains are connected by an edge in the given graph. If given, only couplers
between chains based on this graph are displayed.

• interaction_edges (list (optional, default None)) – A list of edges
used as interactions. If given, only these couplers are displayed.

• show_labels (boolean (optional, default False)) – If True, each chain
in emb is labelled with its key.

• chain_color (dict (optional, default None)) – Colors as a dict of form
{node: rgba_color, . . . } associated with each key in emb, where colors are length-4 tuples
of floats between 0 and 1 inclusive. If None, each chain is assigned a different color.

• unused_color (tuple (optional, default (0.9,0.9,0.9,1.0))) –
Color for nodes of G that are not part of chains, and edges that are neither chain edges nor
interactions. If None, these nodes and edges are not shown.

46 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html#networkx.drawing.nx_pylab.draw_networkx
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

DWaveNetworkX Documentation, Release 0.8.13

• overlapped_embedding (boolean (optional, default False)) – If True,
chains in embmay overlap (contain the same vertices in G), and these overlaps are displayed
as concentric circles.

• kwargs (optional keywords) – See draw_networkx() for a description of op-
tional keywords, with the exception of the pos parameter, which is unsupported. If
the linear_biases or quadratic_biases parameters are provided, any provided
node_color or edge_color arguments are ignored.

dwave_networkx.drawing.zephyr_layout.draw_zephyr_yield

draw_zephyr_yield(G, **kwargs)
Draws the given graph G with highlighted faults, according to layout.

Parameters

• G (NetworkX graph) – Graph to be parsed for faults.

• unused_color (tuple or color string (optional, default (0.9,
0.9,0.9,1.0))) – The color to use for nodes and edges of G which are not faults. If
unused_color is None, these nodes and edges will not be shown at all.

• fault_color (tuple or color string (optional, default (1.0,0.
0,0.0,1.0))) – A color to represent nodes absent from the graph G. Colors should be
length-4 tuples of floats between 0 and 1 inclusive.

• fault_shape (string, optional (default='x')) – The shape of the fault
nodes. Specification is as for Matplotlib’s markers; for example “o” (circle), “^” (triangle)”,
“s” (square) and many more options.

• fault_style (string, optional (default='dashed')) – Edge fault line
style (solid|dashed|dotted|dashdot)

• kwargs (optional keywords) – See draw_networkx() for a description of op-
tional keywords, with the exception of the pos parameter, which is unsupported. If
the linear_biases or quadratic_biases parameters are provided, any provided
node_color or edge_color arguments are ignored.

dwave_networkx.drawing.zephyr_layout.zephyr_layout

zephyr_layout(G, scale=1.0, center=None, dim=2)
Positions the nodes of graph G in a Zephyr topology.

NumPy is required for this function.

Parameters

• G (NetworkX graph) – A Zephyr graph or a subgraph of a Zephyr graph, as produced
by the dwave_networkx.zephyr_graph() function.

• scale (float (default 1.)) – Scale factor. A setting of scale = 1 fits all posi-
tions within [0, 1] on the x-axis and [-1, 0] on the y-axis.

• center (None or array (default None)) – Coordinates of the top left corner.

• dim (int (default 2)) – Number of dimensions. When dim > 2, all extra dimensions
are set to 0.

Returns pos – Positions as a dictionary keyed by node.

3.1. Documentation 47

https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html#networkx.drawing.nx_pylab.draw_networkx
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://matplotlib.org/stable/api/markers_api.html#module-matplotlib.markers
https://networkx.org/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html#networkx.drawing.nx_pylab.draw_networkx
https://scipy.org
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

Return type dict

Examples

This example gives the positions of a Zephyr lattice of size 2.

>>> G = dnx.zephyr_graph(2)
>>> pos = dnx.zephyr_layout(G)

Example

This example uses the draw_zephyr_embedding() function to show the positions of a five-node clique on a
small Zephyr graph.

>>> import dwave_networkx as dnx
>>> import matplotlib.pyplot as plt
>>> import networkx as nx
...
>>> G = dnx.zephyr_graph(1)
>>> embedding = {"N1": [13, 44], "N2": [11], "N3": [41], "N4": [40], "N5": [9, 37]}
...
>>> plt.ion()
>>> dnx.draw_zephyr_embedding(G, embedding, show_labels=True)

Fig. 11: Five-node clique embedded in a small Zephyr graph.

Graph Generators

Generators for graphs, such the graphs (topologies) of D-Wave System QPUs.

D-Wave Systems

48 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

chimera_graph(m[, n, t, create_using, . . .]) Creates a Chimera lattice of size (m, n, t).
pegasus_graph(m[, create_using, node_list, . . .]) Creates a Pegasus graph with size parameter m.
zephyr_graph(m[, t, create_using, . . .]) Creates a Zephyr graph with grid parameter m and tile

parameter t.

dwave_networkx.chimera_graph

chimera_graph(m, n=None, t=None, create_using=None, node_list=None, edge_list=None, data=True,
coordinates=False, check_node_list=False, check_edge_list=False)

Creates a Chimera lattice of size (m, n, t).

Parameters

• m (int) – Number of rows in the Chimera lattice.

• n (int (optional, default m)) – Number of columns in the Chimera lattice.

• t (int (optional, default 4)) – Size of the shore within each Chimera tile.

• create_using (Graph (optional, default None)) – If provided, this graph
is cleared of nodes and edges and filled with the new graph. Usually used to set the type of
the graph.

• node_list (iterable (optional, default None)) – Iterable of nodes in
the graph. The nodes should typically be compatible with the requested lattice-
shape parameters and coordinate system; incompatible nodes are accepted unless you
set check_node_list=True. If not specified, calculated from (m, n, t) and
coordinates per the topology description below; all 2𝑡𝑚𝑛 nodes are included.

• edge_list (iterable (optional, default None)) – Iterable of edges in the
graph. Edges must be 2-tuples of the nodes specified in node_list, or calculated from
(m, n, t) and coordinates per the topology description below; incompatible edges are
ignored unless you set check_edge_list=True. If not specified, all edges compatible
with the node_list and topology description are included.

• data (bool (optional, default True)) – If True, each node has a chimera_index attribute.
The attribute is a 4-tuple Chimera index as defined below.

• coordinates (bool (optional, default False)) – If True, node labels are 4-tuples,
equivalent to the chimera_index attribute as below. In this case, the data parameter con-
trols the existence of a linear_index attribute, which is an integer.

• check_node_list (bool (optional, default False)) – If True, the node_list ele-
ments are checked for compatibility with the graph topology and node labeling conventions,
and an error is thrown if any node is incompatible or duplicates exist. In other words, the
node_list must specify a subgraph of the full-yield graph described below. An excep-
tion is allowed if check_edge_list=False, in which case any node in edge_list
is treated as valid.

• check_edge_list (bool (optional, default False)) – If True, the edge_list el-
ements are checked for compatibility with the graph topology and node labeling conven-
tions, an error is thrown if any edge is incompatible or duplicates exist. In other words, the
edge_list must specify a subgraph of the full-yield graph described below.

Returns G – An (m, n, t) Chimera lattice. Nodes are labeled by integers.

Return type NetworkX Graph

3.1. Documentation 49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

A Chimera lattice is an m-by-n grid of Chimera tiles. Each Chimera tile is itself a bipartite graph with shores of
size t. The connection in a Chimera lattice can be expressed using a node-indexing notation (i, j, u, k) for each
node.

• (i, j) indexes the (row, column) of the Chimera tile. i must be between 0 and m - 1, inclusive, and j must
be between 0 and n - 1, inclusive.

• u=0 indicates the left-hand nodes in the tile, and u=1 indicates the right-hand nodes.

• k=0, 1, . . . , t - 1 indexes nodes within either the left- or right-hand shores of a tile.

In this notation, two nodes (i, j, u, k) and (i’, j’, u’, k’) are neighbors if and only if:

(i = i’ AND j = j’ AND u != u’) OR (i = i’ +/- 1 AND j = j’ AND u = 0 AND u’ = 0 AND k = k’) OR
(i = i’ AND j = j’ +/- 1 AND u = 1 AND u’ = 1 AND k = k’)

The first of the three terms of the disjunction gives the bipartite connections within the tile. The second and
third terms give the vertical and horizontal connections between blocks respectively.

Node (i, j, u, k) is labeled by:

label = i * n * 2 * t + j * 2 * t + u * t + k

Examples

>>> G = dnx.chimera_graph(1, 1, 2) # a single Chimera tile
>>> len(G)
4
>>> list(G.nodes()) # doctest: +SKIP
[0, 1, 2, 3]
>>> list(G.nodes(data=True)) # doctest: +SKIP
[(0, {'chimera_index': (0, 0, 0, 0)}),
(1, {'chimera_index': (0, 0, 0, 1)}),
(2, {'chimera_index': (0, 0, 1, 0)}),
(3, {'chimera_index': (0, 0, 1, 1)})]

>>> list(G.edges()) # doctest: +SKIP
[(0, 2), (0, 3), (1, 2), (1, 3)]

dwave_networkx.pegasus_graph

pegasus_graph(m, create_using=None, node_list=None, edge_list=None, data=True, offset_lists=None,
offsets_index=None, coordinates=False, fabric_only=True, nice_coordinates=False,
check_node_list=False, check_edge_list=False)

Creates a Pegasus graph with size parameter m.

Parameters

• m (int) – Size parameter for the Pegasus lattice.

• create_using (Graph, optional (default None)) – If provided, this graph
is cleared of nodes and edges and filled with the new graph. Usually used to set the type of
the graph.

• node_list (iterable (optional, default None)) – Iterable of nodes in
the graph. The nodes should typically be compatible with the requested lattice shape
parameters and coordinate system, incompatible nodes are accepted unless you set
check_node_list=True. If not specified, calculated from m, fabric_only,
nice_coordinates, offset_lists and offset_index and coordinates per
the topology description below.

50 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

• edge_list (iterable (optional, default None)) – Iterable of edges in the
graph. Edges must be 2-tuples of the nodes specified in node_list, or calculated from
m, fabric_only, nice_coordinates, offset_lists and offset_index and
coordinates per the topology description below; incompatible edges are ignored un-
less you set check_edge_list=True. If not specified, all edges compatible with the
node_list and topology description are included.

• data (bool, optional (default True)) – If True, each node has a pegasus_index attribute.
The attribute is a 4-tuple Pegasus index as defined below. If the coordinates parameter is
True, a linear_index, which is an integer, is used.

• coordinates (bool, optional (default False)) – If True, node labels are 4-tuple Pega-
sus indices. Ignored if the nice_coordinates parameter is True.

• offset_lists (pair of lists, optional (default None)) – Directly
controls the offsets. Each list in the pair must have length 12 and contain even ints. If
offset_lists is not None, the offsets_index parameter must be None.

• offsets_index (int, optional (default None)) – A number between 0 and
7, inclusive, that selects a preconfigured set of topological parameters. If both the off-
sets_index and offset_lists parameters are None, the offsets_index parameters is set to zero.
At least one of these two parameters must be None.

• fabric_only (bool, optional (default True)) – The Pegasus graph, by definition, has
some disconnected components. If True, the generator only constructs nodes from the
largest component. If False, the full disconnected graph is constructed. Ignored if the
edge_lists parameter is not None or nice_coordinates is True

• nice_coordinates (bool, optional (default False)) – If the offsets_index parameter is
0, the graph uses a “nicer” coordinate system, more compatible with Chimera addressing.
These coordinates are 5-tuples taking the form (𝑡, 𝑦, 𝑥, 𝑢, 𝑘) where 0 <= 𝑥 < 𝑀 − 1,
0 <= 𝑦 < 𝑀 − 1, 0 <= 𝑢 < 2, 0 <= 𝑘 < 4, and 0 <= 𝑡 < 3. For any given
0 <= 𝑡0 < 3, the subgraph of nodes with 𝑡 = 𝑡0 has the structure of chimera(M-1, M-
1, 4) with the addition of odd couplers. Supercedes both the fabric_only and coordinates
parameters.

• check_node_list (bool (optional, default False)) – If True, the node_list ele-
ments are checked for compatibility with the graph topology and node labeling conventions,
an error is thrown if any node is incompatible or duplicates exist. In other words, only node
lists that specify subgraphs of the default (full yield) graph are permitted. An exception is al-
lowed if check_edge_list=False, in which case any node in edge_list is treated
as valid.

• check_edge_list (bool (optional, default False)) – If True, the edge_list elements
are checked for compatibility with the graph topology and node labeling conventions, an er-
ror is thrown if any edge is incompatible or duplicates exist. In other words, only edge_lists
that specify subgraphs of the default (full yield) graph are permitted.

Returns G – A Pegasus lattice for size parameter m.

Return type NetworkX Graph

The maximum degree of this graph is 15. The number of nodes depends on multiple parameters; for example,

• pegasus_graph(1): zero nodes

• pegasus_graph(m, fabric_only=False): 24𝑚(𝑚− 1) nodes

• pegasus_graph(m, fabric_only=True): 24𝑚(𝑚− 1)− 8(𝑚− 1) nodes

• pegasus_graph(m, nice_coordinates=True): 24(𝑚− 1)2 nodes

3.1. Documentation 51

https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

Counting formulas for edges have a complicated dependency on parameter settings. Some example upper
bounds are:

• pegasus_graph(1, fabric_only=False): zero edges

• pegasus_graph(m, fabric_only=False): 12 * (15 * (𝑚− 1)2 +𝑚− 3) edges if 𝑚 > 1

Note that the formulas above are valid for default offset parameters.

A Pegasus lattice is a graph minor of a lattice similar to Chimera, where unit tiles are completely connected. In
its most general definition, prelattice 𝑄(𝑁0, 𝑁1) contains nodes of the form

• vertical nodes: (𝑖, 𝑗, 0, 𝑘) with 0 <= 𝑘 < 2

• horizontal nodes: (𝑖, 𝑗, 1, 𝑘) with 0 <= 𝑘 < 2

for 0 <= 𝑖 <= 𝑁0 and 0 <= 𝑗 < 𝑁1, and edges of the form

• external: (𝑖, 𝑗, 𝑢, 𝑘) ~ (𝑖+ 𝑢, 𝑗 + 1− 𝑢, 𝑢, 𝑘)

• internal: (𝑖, 𝑗, 0, 𝑘) ~ (𝑖, 𝑗, 1, ℎ)

• odd: (𝑖, 𝑗, 𝑢, 0) ~ (𝑖, 𝑗, 𝑢, 1)

Given two lists of offsets, 𝑆0 and 𝑆1, of length 𝐿0 and 𝐿1, where both lengths and values must be divisible by
2, the minor—a Pegasus lattice—is constructed by contracting the complete intervals of external edges:

I(0, w, k, z) = [(L1*w + k, L0*z + S0[k] + r, 0, k % 2) for 0 <= r < L0]
I(1, w, k, z) = [(L1*z + S1[k] + r, L0*w + k, 1, k % 2) for 0 <= r < L1]

and deleting the prelattice nodes of any interval not fully contained in 𝑄(𝑁0, 𝑁1).

This generator, ‘pegasus_graph()’, is specialized for the minor constructed by prelattice and offset parameters
𝐿0 = 𝐿1 = 12 and 𝑁0 = 𝑁1 = 12𝑚.

The Pegasus index of a node in a Pegasus lattice, (𝑢,𝑤, 𝑘, 𝑧), can be interpreted as:

• 𝑢: qubit orientation (0 = vertical, 1 = horizontal)

• 𝑤: orthogonal major offset

• 𝑘: orthogonal minor offset

• 𝑧: parallel offset

Edges in the minor have the form

• external: (𝑢,𝑤, 𝑘, 𝑧) ~ (𝑢,𝑤, 𝑘, 𝑧 + 1)

• internal: (0, 𝑤0, 𝑘0, 𝑧0) ~ (1, 𝑤1, 𝑘1, 𝑧1)

• odd: (𝑢,𝑤, 2𝑘, 𝑧) ~ (𝑢,𝑤, 2𝑘 + 1, 𝑧)

where internal edges only exist when

1. w1 = z0 + (1 if k1 < S0[k0] else 0)

2. z1 = w0 - (1 if k0 < S1[k1] else 0)

Linear indices are computed from Pegasus indices by the formula:

q = ((u * m + w) * 12 + k) * (m - 1) + z

52 Chapter 3. Contributing

DWaveNetworkX Documentation, Release 0.8.13

Examples

>>> G = dnx.pegasus_graph(2, nice_coordinates=True)
>>> G.nodes(data=True)[(0, 0, 0, 0, 0)] # doctest: +SKIP
{'linear_index': 4, 'pegasus_index': (0, 0, 4, 0)}

dwave_networkx.zephyr_graph

zephyr_graph(m, t=4, create_using=None, node_list=None, edge_list=None, data=True, coordi-
nates=False, check_node_list=False, check_edge_list=False)

Creates a Zephyr graph with grid parameter m and tile parameter t.

The Zephyr topology is described in [BRK].

Parameters

• m (int) – Grid parameter for the Zephyr lattice.

• t (int) – Tile parameter for the Zephyr lattice.

• create_using (Graph, optional (default None)) – If provided, this graph
is cleared of nodes and edges and filled with the new graph. Usually used to set the type of
the graph.

• node_list (iterable (optional, default None)) – Iterable of nodes in the
graph. If not specified, calculated from (m, t) and coordinates. The nodes should
typically be compatible with the requested lattice shape parameters and coordinate system,
incompatible nodes are accepted unless you set check_node_list=True. If not speci-
fied, all 4𝑡𝑚(2𝑚+ 1) nodes compatible with the topology description are included.

• edge_list (iterable (optional, default None)) – Iterable of edges in the
graph. Edges must be 2-tuples of the nodes specified in node_list, or calculated from (m,
t) and coordinates per the topology description below; incompatible edges are ignored
unless you set check_edge_list=True. If not specified, all edges compatible with the
node_list and topology description are included.

• data (bool, optional (default True)) – If True, adds to each node an attribute with a
format that depends on the coordinates parameter: a 5-tuple 'zephyr_index' if
coordinates=False and an integer 'linear_index' if coordinates is True.

• coordinates (bool, optional (default False)) – If True, node labels are 5-tuple Zephyr
indices.

• check_node_list (bool (optional, default False)) – If True, the node_list ele-
ments are checked for compatibility with the graph topology and node labeling conventions,
and an error is thrown if any node is incompatible or duplicates exist. In other words,
node_lists must specify a subgraph of the default (full yield) graph described below.
An exception is allowed if check_edge_list=False, any node in edge_list will also
be treated as valid.

• check_edge_list (bool (optional, default False)) – If True, edge_list elements
are checked for compatibility with the graph topology and node labeling conventions, and an
error is thrown if any edge is incompatible or duplicates exist. In other words, edge_list
must specify a subgraph of the default (full yield) graph described below.

Returns G – A Zephyr lattice for grid parameter m and tile parameter t.

Return type NetworkX Graph

The maximum degree of this graph is 4𝑡+ 4. The number of nodes is given by

3.1. Documentation 53

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

• zephyr_graph(m, t): 4𝑡𝑚(2𝑚+ 1)

The number of edges depends on parameter settings,

• zephyr_graph(1, t): 2𝑡(8𝑡+ 3)

• zephyr_graph(m, t): 2𝑡((8𝑡+ 8)𝑚2 − 2𝑚− 3) if m > 1

A Zephyr lattice is a graph minor of a lattice similar to Chimera, where unit tiles have odd couplers similar to
Pegasus graphs. In its most general definition, prelattice 𝑄(2𝑚+ 1) contains nodes of the form

• vertical nodes: (𝑖, 𝑗, 0, 𝑘) with 0 <= 𝑘 < 2𝑡

• horizontal nodes: (𝑖, 𝑗, 1, 𝑘) with 0 <= 𝑘 < 2𝑡

for 0 <= 𝑖 < 2𝑚+ 1 and 0 <= 𝑗 < 2𝑚+ 1, and edges of the form

• external: (𝑖, 𝑗, 𝑢, 𝑘) ~ (𝑖+ 𝑢, 𝑗 + 1− 𝑢, 𝑢, 𝑘)

• internal: (𝑖, 𝑗, 0, 𝑘) ~ (𝑖, 𝑗, 1, ℎ)

• odd: (𝑖, 𝑗, 𝑢, 2𝑘) ~ (𝑖, 𝑗, 𝑢, 2𝑘 + 1)

The minor—a Zephyr lattice—is constructed by contracting pairs of external edges:

I(0, w, k, j, z) = [(2*z+j, w, 0, 2*k+j), (2*z+1+j, w, 0, 2*k+j)]
I(1, w, k, j, z) = [(w, 2*z+j, 1, 2*k+j), (w, 2*z+1+j, 1, 2*k+j)]

and deleting the prelattice nodes of any pair not fully contained in 𝑄(2𝑚+ 1).

The Zephyr index of a node in a Zephyr lattice, (𝑢,𝑤, 𝑘, 𝑗, 𝑧), can be interpreted as:

• 𝑢: qubit orientation (0 = vertical, 1 = horizontal)

• 𝑤: orthogonal major offset; 0 <= 𝑤 < 2𝑚+ 1

• 𝑘: orthogonal secondary offset; 0 <= 𝑘 < 𝑡

• 𝑗: orthogonal minor offset; 0 <= 𝑗 < 2

• 𝑧: parallel offset; 0 <= 𝑧 < 𝑚

Edges in the minor have the form

• external: (𝑢,𝑤, 𝑘, 𝑗, 𝑧) ~ (𝑢,𝑤, 𝑘, 𝑗, 𝑧 + 1)

• odd: (𝑢,𝑤, 2𝑘, 𝑧) ~ (𝑢,𝑤, 2𝑘 + 1, 𝑧 − 𝑎)

• internal: (0, 2𝑤 + 1− 𝑎, 𝑘, 𝑗, 𝑧 − 𝑗𝑏) ~ (1, 2𝑧 + 1− 𝑏, ℎ, 𝑖, 𝑤 − 𝑖𝑎)

for 0 <= 𝑎 < 2 and 0 <= 𝑏 < 2, where internal edges only exist when

1. 0 <= 2𝑤 + 1− 𝑎 < 2𝑚+ 1,

2. 0 <= 2𝑧 + 1− 𝑎 < 2𝑚+ 1,

3. 0 <= 𝑧 − 𝑗𝑏 < 𝑚, and

4. 0 <= 𝑤 − 𝑖𝑎 < 𝑚.

Linear indices are computed from Zephyr indices by the formula:

q = (((u * (2 * m + 1) + w) * t + k) * 2 + j) * m + z

54 Chapter 3. Contributing

DWaveNetworkX Documentation, Release 0.8.13

Examples

>>> G = dnx.zephyr_graph(2)
>>> G.nodes(data=True)[(0, 0, 0, 0, 0)] # doctest: +SKIP
{'linear_index': 0}

References

Example

This example uses the the chimera_graph() function to create a Chimera lattice of size (1, 1, 4), which is a single unit
cell in Chimera topology, and the find_chimera() function to determine the Chimera indices.

>>> import networkx as nx
>>> import dwave_networkx as dnx
>>> G = dnx.chimera_graph(1, 1, 4)
>>> chimera_indices = dnx.find_chimera_indices(G)
>>> print chimera_indices
{0: (0, 0, 0, 0),
1: (0, 0, 0, 1),
2: (0, 0, 0, 2),
3: (0, 0, 0, 3),
4: (0, 0, 1, 0),
5: (0, 0, 1, 1),
6: (0, 0, 1, 2),
7: (0, 0, 1, 3)}

Fig. 12: Indices of a Chimera unit cell found by creating a lattice of size (1, 1, 4).

Toruses

chimera_torus(m[, n, t, node_list, edge_list]) Creates a defect-free Chimera lattice of size (𝑚,𝑛, 𝑡)
subject to periodic boundary conditions.

Continued on next page

3.1. Documentation 55

DWaveNetworkX Documentation, Release 0.8.13

Table 18 – continued from previous page
pegasus_torus(m[, node_list, edge_list, . . .]) Creates a Pegasus graph modified to allow for periodic

boundary conditions and translational invariance.
zephyr_torus(m[, t, node_list, edge_list]) Creates a Zephyr graph modified to allow for periodic

boundary conditions and translational invariance.

dwave_networkx.chimera_torus

chimera_torus(m, n=None, t=None, node_list=None, edge_list=None)
Creates a defect-free Chimera lattice of size (𝑚,𝑛, 𝑡) subject to periodic boundary conditions.

Parameters

• m (int) – Number of rows in the Chimera torus lattice. If 𝑚 < 3 translational invariance
already applies in the rows. If 𝑚 >= 3 additional external couplers are added, reestablishing
translational invariance. Connectivity of all horizontal qubits is 𝑚𝑖𝑛(𝑚− 1, 2) + 2𝑡.

• n (int (optional, default m)) – Number of columns in the Chimera torus lattice.
If 𝑛 < 3 translational invariance already applies in the columns. If 𝑛 >= 3 additional exter-
nal couplers are added, reestablishing translational invariance. Connectivity of all vertical
qubits is 𝑚𝑖𝑛(𝑛− 1, 2) + 2𝑡.

• t (int (optional, default 4)) – Size of the shore within each Chimera tile.

• node_list (iterable (optional, default None)) – Iterable of nodes in the
graph. If None, nodes are generated for an undiluted torus calculated from m, n and t as
described below. The node list must describe a subset of the torus nodes to be maintained in
the graph using the coordinate node labeling scheme.

• edge_list (iterable (optional, default None)) – Iterable of edges in the
graph. If None, edges are generated for an undiluted torus calculated from m, n and t as
described below. The edge list must describe a subgraph of the torus, using the coordinate
node labeling scheme.

Returns G – A Chimera torus with shape (m, n, t), with Chimera coordinate node labels.

Return type NetworkX Graph

A Chimera torus is a generalization of the standard chimera graph whereby degree-six connectivity is main-
tained, but the boundary condition is modified to enforce an additional translational-invariance symmetry [RH].
Local connectivity in the Chimera torus is identical to connectivity for chimera graph nodes away from the
boundary. The graph has V=8*m*n nodes, and min(6, 4 + m)V//2 + min(6, 4 + n)V/2 edges.
With the standard 𝐾𝑡,𝑡 Chimera tile definition, any tile displacement (𝑥, 𝑦) modulo (𝑚,𝑛), rows and columns
respectively, that is, (i, j, u, k) -> ((i + x)%m, (i + y)%n, u, k), defines an automorphism.

See chimera_graph() for additional information.

Examples

>>> G = dnx.chimera_torus(3, 3, 4) # a 3x3 tile chimera graph (connectivity 6)
>>> len(G)
72
>>> any([len(list(G.neighbors(n))) != 6 for n in G.nodes])
False

56 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.pegasus_torus

pegasus_torus(m, node_list=None, edge_list=None, offset_lists=None, offsets_index=None)
Creates a Pegasus graph modified to allow for periodic boundary conditions and translational invariance.

Parameters

• m (int) – Size parameter for the Pegasus lattice. Connectivity of all nodes is 13+𝑚𝑖𝑛(𝑚−
1, 2)

• node_list (iterable (optional, default None)) – Iterable of nodes in the
graph. If None, nodes are generated for an undiluted torus calculated from m as described
below. The node list must describe a subset of the torus nodes to be maintained in the graph
using the coordinate node labeling scheme.

• edge_list (iterable (optional, default None)) – Iterable of edges in the
graph. If None, edges are generated for an undiluted torus calculated from m as described
below. The edge list must describe a subgraph of the torus, using the coordinate node
labeling scheme.

• offset_lists (pair of lists, optional (default None)) – Directly
controls the offsets. Each list in the pair must have length 12 and contain even integers.
If offset_lists is not None, the offsets_index parameter must be None.

• offsets_index (int, optional (default None)) – A number between 0
and 7, inclusive, that selects a preconfigured set of topological parameters. If both the
offsets_index and offset_lists parameters are None, the offsets_index pa-
rameters is set to zero. At least one of these two parameters must be None.

Returns G – A Pegasus torus for size parameter 𝑚 using the coordinate labeling system.

Return type NetworkX Graph

A Pegasus torus is a generalization of the standard Pegasus graph whereby degree-fifteen connectivity is main-
tained, but the boundary condition is modified to enforce an additional translational-invariance symmetry [RH].
Local connectivity in the Pegasus torus is identical to connectivity for Pegasus graph nodes away from the
boundary. A tile consists of 24 nodes, and the torus has 𝑚− 1 by 𝑚− 1 tiles. Tile displacement modulo 𝑚− 1
defines an automorphism.

See pegasus_graph() for additional information.

Examples

>>> G = dnx.pegasus_torus(4) # a 3x3 tile pegasus torus (connectivity 15)
>>> len(G) # 3*3*24
216
>>> any([len(list(G.neighbors(n))) != 15 for n in G.nodes])
False

dwave_networkx.zephyr_torus

zephyr_torus(m, t=4, node_list=None, edge_list=None)
Creates a Zephyr graph modified to allow for periodic boundary conditions and translational invariance.

The graph matches the local connectivity properties of a standard Zephyr graph, but with modified periodic
boundary condition. Tiles of 8𝑡 nodes are arranged on an 𝑚 by 𝑚 torus.

Parameters

3.1. Documentation 57

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

• m (int) – Grid parameter for the Zephyr lattice. Connectivity of all nodes is 4𝑡+𝑚𝑖𝑛(2𝑚−
1, 4).

• t (int) – Tile parameter for the Zephyr lattice.

• node_list (iterable (optional, default None)) – Iterable of nodes in the
graph. If None, nodes are generated for an undiluted torus calculated from m and t as
described below. The node list must describe a subset of the torus nodes to be maintained in
the graph using the coordinate node labeling scheme.

• edge_list (iterable (optional, default None)) – Iterable of edges in the
graph. If None, edges are generated for an undiluted torus calculated from m and t as
described below. The edge list must describe a subgraph of the torus, using the coordinate
node labeling scheme.

Returns G – A Zephyr torus with grid parameter m and tile parameter t, with Zephyr coordinate
node labels.

Return type NetworkX Graph

A Zephyr torus is a generalization of the standard Zephyr graph whereby degree-twenty connectivity is main-
tained, but the boundary condition is modified to enforce an additional translational-invariance symmetry [RH].
Local connectivity in the Zephyr torus is identical to connectivity for Zephyr graph nodes away from the bound-
ary. A tile consists of 8𝑡 nodes, and the torus has 𝑚 by 𝑚 tiles. Tile displacement modulo 𝑚 defines an
automorphism.

See zephyr_graph() for additional information.

Examples

>>> G = dnx.zephyr_torus(3) # a 3x3 tile pegasus torus (connectivity 15)
>>> len(G) # 3*3*24
288
>>> any([len(list(G.neighbors(n))) != 20 for n in G.nodes])
False

Other Graphs

markov_network(potentials) Creates a Markov Network from potentials.

dwave_networkx.markov_network

markov_network(potentials)
Creates a Markov Network from potentials.

A Markov Network is also knows as a Markov Random Field

Parameters potentials (dict[tuple, dict]) – A dict where the keys are either nodes or
edges and the values are a dictionary of potentials. The potential dict should map each possible
assignment of the nodes/edges to their energy.

Returns MN – A markov network as a graph where each node/edge stores its potential dict as above.

Return type networkx.Graph

58 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Markov_random_field
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://networkx.org/documentation/stable/reference/classes/graph.html#networkx.Graph

DWaveNetworkX Documentation, Release 0.8.13

Examples

>>> potentials = {('a', 'b'): {(0, 0): -1,
... (0, 1): .5,
... (1, 0): .5,
... (1, 1): 2}}
>>> MN = dnx.markov_network(potentials)
>>> MN['a']['b']['potential'][(0, 0)]
-1

Utilities

Decorators

Decorators allow for input checking and default parameter setting for algorithms.

binary_quadratic_model_sampler(which_args) Decorator to validate sampler arguments.

dwave_networkx.utils.decorators.binary_quadratic_model_sampler

binary_quadratic_model_sampler(which_args)
Decorator to validate sampler arguments.

Parameters which_args (int or sequence of ints) – Location of the sampler argu-
ments of the input function in the form function_name(args, *kw). If more than one sampler is
allowed, can be a list of locations.

Coordinates Conversion

class chimera_coordinates(m, n=None, t=None)
Provides coordinate converters for the chimera indexing scheme.

Parameters

• m (int) – The number of rows in the Chimera lattice.

• n (int, optional (default m)) – The number of columns in the Chimera lattice.

• t (int, optional (default 4)) – The size of the shore within each Chimera tile.

Examples

Convert between Chimera coordinates and linear indices directly

>>> coords = dnx.chimera_coordinates(16, 16, 4)
>>> coords.chimera_to_linear((0, 2, 0, 1))
17
>>> coords.linear_to_chimera(17)
(0, 2, 0, 1)

Construct a new graph with the coordinate labels

3.1. Documentation 59

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

>>> C16 = dnx.chimera_graph(16)
>>> coords = dnx.chimera_coordinates(16)
>>> G = nx.Graph()
>>> G.add_nodes_from(coords.iter_linear_to_chimera(C16.nodes))
>>> G.add_edges_from(coords.iter_linear_to_chimera_pairs(C16.edges))

See also:

chimera_graph() Describes the various conventions.

class pegasus_coordinates(m)
Provides coordinate converters for the Pegasus indexing schemes.

Parameters m (int) – Size parameter for the Pegasus lattice.

See also:

pegasus_graph() Describes the various coordinate conventions.

class zephyr_coordinates(m, t=4)
Provides coordinate converters for the Zephyr indexing schemes.

Parameters

• m (int) – Grid parameter for the Zephyr lattice.

• t (int) – Tile parameter for the Zephyr lattice; must be even.

See also:

zephyr_graph() Describes the various coordinate conventions.

Graph Indexing

See Coordinates Conversion on instantiating the needed lattice size and setting correct domain and range for coordi-
nates in a QPU working graph.

For the iterator versions of these functions, see the code.

Chimera

chimera_coordinates.
chimera_to_linear(q)

Convert a 4-term Chimera coordinate to a linear index.

chimera_coordinates.
linear_to_chimera(r)

Convert a linear index to a 4-term Chimera coordinate.

find_chimera_indices(G) Attempts to determine the Chimera indices of the nodes
in graph G.

dwave_networkx.chimera_coordinates.chimera_to_linear

chimera_coordinates.chimera_to_linear(q)
Convert a 4-term Chimera coordinate to a linear index.

Parameters q (4-tuple) – Chimera coordinate.

60 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

Examples

>>> dnx.chimera_coordinates(16).chimera_to_linear((2, 2, 0, 0))
272

dwave_networkx.chimera_coordinates.linear_to_chimera

chimera_coordinates.linear_to_chimera(r)
Convert a linear index to a 4-term Chimera coordinate.

Parameters r (int) – Linear index.

Examples

>>> dnx.chimera_coordinates(16).linear_to_chimera(272)
(2, 2, 0, 0)

dwave_networkx.find_chimera_indices

find_chimera_indices(G)
Attempts to determine the Chimera indices of the nodes in graph G.

See the chimera_graph() function for a definition of a Chimera graph and Chimera indices.

Parameters G (NetworkX graph) – Should be a single-tile Chimera graph.

Returns chimera_indices – A dict of the form {node: (i, j, u, k), . . . } where (i, j, u, k) is a 4-tuple
of integer Chimera indices.

Return type dict

Examples

>>> G = dnx.chimera_graph(1, 1, 4)
>>> chimera_indices = dnx.find_chimera_indices(G)

>>> G = nx.Graph()
>>> G.add_edges_from([(0, 2), (1, 2), (1, 3), (0, 3)])
>>> chimera_indices = dnx.find_chimera_indices(G)
>>> nx.set_node_attributes(G, chimera_indices, 'chimera_index')

Pegasus

pegasus_coordinates.linear_to_nice(r) Convert a linear index into a 5-term nice coordinate.
pegasus_coordinates.
linear_to_pegasus(r)

Convert a linear index into a 4-term Pegasus coordinate.

pegasus_coordinates.nice_to_linear(n) Convert a 5-term nice coordinate into a linear index.
Continued on next page

3.1. Documentation 61

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

DWaveNetworkX Documentation, Release 0.8.13

Table 22 – continued from previous page
pegasus_coordinates.nice_to_pegasus(n) Convert a 5-term nice coordinate into a 4-term Pegasus

coordinate.
pegasus_coordinates.
pegasus_to_linear(q)

Convert a 4-term Pegasus coordinate into a linear index.

pegasus_coordinates.pegasus_to_nice(p) Convert a 4-term Pegasus coordinate to a 5-term nice
coordinate.

dwave_networkx.pegasus_coordinates.linear_to_nice

pegasus_coordinates.linear_to_nice(r)
Convert a linear index into a 5-term nice coordinate.

Parameters r (int) – Linear index.

Examples

>>> dnx.pegasus_coordinates(2).linear_to_nice(4)
(0, 0, 0, 0, 0)

dwave_networkx.pegasus_coordinates.linear_to_pegasus

pegasus_coordinates.linear_to_pegasus(r)
Convert a linear index into a 4-term Pegasus coordinate.

Parameters r (int) – Linear index.

Examples

>>> dnx.pegasus_coordinates(2).linear_to_pegasus(4)
(0, 0, 4, 0)

dwave_networkx.pegasus_coordinates.nice_to_linear

pegasus_coordinates.nice_to_linear(n)
Convert a 5-term nice coordinate into a linear index.

Parameters n (5-tuple) – Nice coordinate.

Examples

>>> dnx.pegasus_coordinates(2).nice_to_linear((0, 0, 0, 0, 0))
4

dwave_networkx.pegasus_coordinates.nice_to_pegasus

static pegasus_coordinates.nice_to_pegasus(n)
Convert a 5-term nice coordinate into a 4-term Pegasus coordinate.

62 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

Parameters n (5-tuple) – Nice coordinate.

Examples

>>> dnx.pegasus_coordinates.nice_to_pegasus((0, 0, 0, 0, 0))
(0, 0, 4, 0)

Note that this method does not depend on the size of the Pegasus lattice.

dwave_networkx.pegasus_coordinates.pegasus_to_linear

pegasus_coordinates.pegasus_to_linear(q)
Convert a 4-term Pegasus coordinate into a linear index.

Parameters q (4-tuple) – Pegasus indices.

Examples

>>> dnx.pegasus_coordinates(2).pegasus_to_linear((0, 0, 4, 0))
4

dwave_networkx.pegasus_coordinates.pegasus_to_nice

static pegasus_coordinates.pegasus_to_nice(p)
Convert a 4-term Pegasus coordinate to a 5-term nice coordinate.

Parameters p (4-tuple) – Pegasus coordinate.

Examples

>>> dnx.pegasus_coordinates.pegasus_to_nice((0, 0, 4, 0))
(0, 0, 0, 0, 0)

Note that this method does not depend on the size of the Pegasus lattice.

Zephyr

zephyr_coordinates.graph_to_linear(g) Return a copy of the graph g relabeled to have linear
indices

zephyr_coordinates.graph_to_zephyr(g) Return a copy of the graph g relabeled to have zephyr
coordinates

zephyr_coordinates.
iter_linear_to_zephyr(rlist)

Return an iterator converting a sequence of linear in-
dices to 5-term Zephyr coordinates.

zephyr_coordinates.
iter_linear_to_zephyr_pairs(plist)

Return an iterator converting a sequence of pairs of lin-
ear indices to pairs of 5-term Zephyr coordinates.

zephyr_coordinates.
iter_zephyr_to_linear(qlist)

Return an iterator converting a sequence of 5-term
Zephyr coordinates to linear indices.

Continued on next page

3.1. Documentation 63

DWaveNetworkX Documentation, Release 0.8.13

Table 23 – continued from previous page
zephyr_coordinates.
iter_zephyr_to_linear_pairs(plist)

Return an iterator converting a sequence of pairs of 5-
term Zephyr coordinates to pairs of linear indices.

zephyr_coordinates.linear_to_zephyr(r) Convert a linear index into a 5-term Zephyr coordinate.
zephyr_coordinates.zephyr_to_linear(q) Convert a 5-term Zephyr coordinate into a linear index.
zephyr_sublattice_mappings(source, target[,
. . .])

Yields mappings from a Chimera or Zephyr graph into
a Zephyr graph.

dwave_networkx.zephyr_coordinates.graph_to_linear

zephyr_coordinates.graph_to_linear(g)
Return a copy of the graph g relabeled to have linear indices

dwave_networkx.zephyr_coordinates.graph_to_zephyr

zephyr_coordinates.graph_to_zephyr(g)
Return a copy of the graph g relabeled to have zephyr coordinates

dwave_networkx.zephyr_coordinates.iter_linear_to_zephyr

zephyr_coordinates.iter_linear_to_zephyr(rlist)
Return an iterator converting a sequence of linear indices to 5-term Zephyr coordinates.

dwave_networkx.zephyr_coordinates.iter_linear_to_zephyr_pairs

zephyr_coordinates.iter_linear_to_zephyr_pairs(plist)
Return an iterator converting a sequence of pairs of linear indices to pairs of 5-term Zephyr coordinates.

dwave_networkx.zephyr_coordinates.iter_zephyr_to_linear

zephyr_coordinates.iter_zephyr_to_linear(qlist)
Return an iterator converting a sequence of 5-term Zephyr coordinates to linear indices.

dwave_networkx.zephyr_coordinates.iter_zephyr_to_linear_pairs

zephyr_coordinates.iter_zephyr_to_linear_pairs(plist)
Return an iterator converting a sequence of pairs of 5-term Zephyr coordinates to pairs of linear indices.

dwave_networkx.zephyr_coordinates.linear_to_zephyr

zephyr_coordinates.linear_to_zephyr(r)
Convert a linear index into a 5-term Zephyr coordinate.

Parameters r (int) – Linear index.

64 Chapter 3. Contributing

https://docs.python.org/3/library/functions.html#int

DWaveNetworkX Documentation, Release 0.8.13

Examples

>>> dnx.zephyr_coordinates(2).linear_to_zephyr(137)
(1, 3, 2, 0, 1)

dwave_networkx.zephyr_coordinates.zephyr_to_linear

zephyr_coordinates.zephyr_to_linear(q)
Convert a 5-term Zephyr coordinate into a linear index.

Parameters q (5-tuple) – Zephyr coordinate.

Examples

>>> dnx.zephyr_coordinates(2).zephyr_to_linear((0, 1, 2, 1, 0))
26

dwave_networkx.zephyr_sublattice_mappings

zephyr_sublattice_mappings(source, target, offset_list=None)
Yields mappings from a Chimera or Zephyr graph into a Zephyr graph.

A sublattice mapping is a function from nodes of

• a zephyr_graph(m_s, t) to nodes of a zephyr_graph(m_t, t) where m_s <= m_t,

• a chimera_graph(m_s, n_s, t) to nodes of a zephyr_graph(m_t, t) where m_s <=
2*m_t and n_s <= 2*m_t, or

• a chimera_graph(m_s, n_s, 2*t) to nodes of a zephyr_graph(m_t, t) where m_s <=
m_t and n_s <= m_t, or

This is used to identify subgraphs of the target Zephyr graphs which are isomorphic to the source graph. How-
ever, if the target graph is not of perfect yield, these functions do not generally produce isomorphisms (for
example, if a node is missing in the target graph, it may still appear in the image of the source graph).

Note that the tile parameter of Chimera graphs must be either the same or double that of the target Zephyr
graphs; if both graphs are Zephyr graphs, the tile parameters must be the same. The mappings pro-
duced preserve the linear ordering of tile indices; see the _zephyr_zephyr_sublattice_mapping,
_double_chimera_zephyr_sublattice_mapping, and _single_chimera_zephyr_sublattice_mapping
internal functions for more details.

Academic note: the full group of isomorphisms of a Chimera graph includes mappings which permute tile
indices on a per-row and per-column basis, in addition to reflections and rotations of the grid of unit tiles where
rotations by 90 and 270 degrees induce a change in orientation. The isomorphisms of Zephyr graphs permit
permutations of major tile indices on a per-row and per-column basis, in addition to reflections of the grid
which induce inversion of orthogonal minor offsets, and rotations which induce inversions of minor offsets
and/or orientation. The full set of sublattice mappings would take those isomorphisms into account; we do not
undertake that complexity here.

Parameters

• source (NetworkX Graph) – The Chimera or Zephyr graph that nodes are input from.

• target (NetworkX Graph) – The Zephyr graph that nodes are output to.

3.1. Documentation 65

DWaveNetworkX Documentation, Release 0.8.13

• offset_list (iterable (tuple), optional (default None)) – An iter-
able of offsets. This can be used to reconstruct a set of mappings, as the offset used to
generate a single mapping is stored in the offset attribute of that mapping.

Yields mapping (function) – A function from nodes of the source graph, to nodes of the target
graph. The offset used to generate this mapping is stored in mapping.offset – these can be
collected and passed into offset_list in a later session.

Exceptions

Base exceptions and errors for D-Wave NetworkX.

All exceptions are derived from NetworkXException.

DWaveNetworkXException Base class for exceptions in DWaveNetworkX.
DWaveNetworkXMissingSampler Exception raised by an algorithm requiring a discrete

model sampler when none is provided.

dwave_networkx.exceptions.DWaveNetworkXException

exception DWaveNetworkXException
Base class for exceptions in DWaveNetworkX.

dwave_networkx.exceptions.DWaveNetworkXMissingSampler

exception DWaveNetworkXMissingSampler
Exception raised by an algorithm requiring a discrete model sampler when none is provided.

Default sampler

Sets a binary quadratic model sampler used by default for functions that require a sample when none is specified.

A sampler is a process that samples from low-energy states in models defined by an Ising equation or a Quadratic
Unconstrained Binary Optimization Problem (QUBO).

Sampler API

• Required Methods: ‘sample_qubo’ and ‘sample_ising’

• Return value: iterable of samples, in order of increasing energy

See dimod for details.

Example

This example creates and uses a placeholder for binary quadratic model samplers that returns a correct response only
in the case of finding an independent set on a complete graph (where one node is always an independent set). The
placeholder sampler can be used to test the simple examples of the functions for configuring a default sampler.

66 Chapter 3. Contributing

https://docs.python.org/3/library/stdtypes.html#tuple
https://github.com/dwavesystems/dimod

DWaveNetworkX Documentation, Release 0.8.13

>>> # Create a placeholder sampler
>>> class ExampleSampler:
... # an example sampler, only works for independent set on complete
... # graphs
... def __init__(self, name):
... self.name = name
... def sample_ising(self, h, J):
... sample = {v: -1 for v in h}
... sample[0] = 1 # set one node to true
... return [sample]
... def sample_qubo(self, Q):
... sample = {v: 0 for v in set().union(*Q)}
... sample[0] = 1 # set one node to true
... return [sample]
... def __str__(self):
... return self.name
...
>>> # Identify the new sampler as the default sampler
>>> sampler0 = ExampleSampler('sampler0')
>>> dnx.set_default_sampler(sampler0)
>>> # Find an independent set using the default sampler
>>> G = nx.complete_graph(5)
>>> dnx.maximum_independent_set(G)
[0]

Functions

set_default_sampler(sampler) Sets a default binary quadratic model sampler.
unset_default_sampler() Resets the default sampler back to None.
get_default_sampler() Queries the current default sampler.

dwave_networkx.default_sampler.set_default_sampler

set_default_sampler(sampler)
Sets a default binary quadratic model sampler.

Parameters sampler – A binary quadratic model sampler. A sampler is a process that samples
from low-energy states in models defined by an Ising equation or a Quadratic Unconstrained
Binary Optimization Problem (QUBO). A sampler is expected to have a ‘sample_qubo’ and
‘sample_ising’ method. A sampler is expected to return an iterable of samples, in order of
increasing energy.

Examples

This example sets sampler0 as the default sampler and finds an independent set for graph G, first using the
default sampler and then overriding it by specifying a different sampler.

>>> dnx.set_default_sampler(sampler0) # doctest: +SKIP
>>> indep_set = dnx.maximum_independent_set_dm(G) # doctest: +SKIP
>>> indep_set = dnx.maximum_independent_set_dm(G, sampler1) # doctest: +SKIP

3.1. Documentation 67

DWaveNetworkX Documentation, Release 0.8.13

dwave_networkx.default_sampler.unset_default_sampler

unset_default_sampler()
Resets the default sampler back to None.

Examples

This example sets sampler0 as the default sampler, verifies the setting, then resets the default, and verifies the
resetting.

>>> dnx.set_default_sampler(sampler0) # doctest: +SKIP
>>> print(dnx.get_default_sampler()) # doctest: +SKIP
'sampler0'
>>> dnx.unset_default_sampler() # doctest: +SKIP
>>> print(dnx.get_default_sampler()) # doctest: +SKIP
None

dwave_networkx.default_sampler.get_default_sampler

get_default_sampler()
Queries the current default sampler.

Examples

This example queries the default sampler before and after specifying a default sampler.

>>> print(dnx.get_default_sampler()) # doctest: +SKIP
None
>>> dnx.set_default_sampler(sampler) # doctest: +SKIP
>>> print(dnx.get_default_sampler()) # doctest: +SKIP
'sampler'

3.1.3 Bibliography

3.1.4 Installation

Installation from PyPi:

pip install dwave_networkx

Installation from source:

pip install -r requirements.txt
python setup.py install

3.1.5 License

Apache License

Version 2.0, January 2004

68 Chapter 3. Contributing

DWaveNetworkX Documentation, Release 0.8.13

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination

3.1. Documentation 69

http://www.apache.org/licenses/

DWaveNetworkX Documentation, Release 0.8.13

of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for

70 Chapter 3. Contributing

DWaveNetworkX Documentation, Release 0.8.13

loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

3.2 Indices and tables

• genindex

• modindex

• search

• Glossary

3.2. Indices and tables 71

https://docs.ocean.dwavesys.com/en/stable/concepts/index.html

DWaveNetworkX Documentation, Release 0.8.13

72 Chapter 3. Contributing

Bibliography

[AL] Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, Volume 2, Article 5.

[DWMP] Dahl, E., “Programming the D-Wave: Map Coloring Problem”, https://www.dwavesys.com/media/
htfgw5bk/map-coloring-wp2.pdf

[DWMP] Dahl, E., “Programming the D-Wave: Map Coloring Problem”, https://www.dwavesys.com/media/
htfgw5bk/map-coloring-wp2.pdf

[AL] Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, Volume 2, Article 5.

[GD] Gogate & Dechter. “A Complete Anytime Algorithm for Treewidth.” https://arxiv.org/abs/1207.4109

[AL] Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, Volume 2, Article 5.

[AL] Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, Volume 2, Article 5.

[AL] Lucas, A. (2014). Ising formulations of many NP problems. Frontiers in Physics, Volume 2, Article 5.

[FIA] Facchetti, G., Iacono G., and Altafini C. (2011). Computing global structural balance in large-scale signed
social networks. PNAS, 108, no. 52, 20953-20958

[BRK] Boothby, Raymond, King, Zephyr Topology of D-Wave Quantum Processors, October 2021. https:
//dwavesys.com/media/fawfas04/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf

[NX] A. A. Hagberg, D. A. Schult and P. J. Swart, “Exploring network structure, dynamics, and function
using NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel
Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15, Aug
2008

[GD] V. Gogate and R. Dechter, “A Complete Anytime Algorithm for Treewidth”, https://arxiv.org/abs/1207.
4109

[AL] A. Lucas (2014). Ising formulations of many NP problems. Frontiers in Physics, Volume 2, Article 5.

[FIA] G. Facchetti, G. Iacono and C. Altafini (2011). Computing global structural balance in large-scale signed
social networks. PNAS, 108, no. 52, 20953-20958

[DWMP] E. Dahl, “Programming the D-Wave: Map Coloring Problem”, https://www.dwavesys.com/media/
htfgw5bk/map-coloring-wp2.pdf

[BBRR] K. Boothby, P. Bunyk, J. Raymond and A. Roy (2019). Next-Generation Topology of D-Wave Quantum
Processors. https://arxiv.org/abs/2003.00133

73

https://www.dwavesys.com/media/htfgw5bk/map-coloring-wp2.pdf
https://www.dwavesys.com/media/htfgw5bk/map-coloring-wp2.pdf
https://www.dwavesys.com/media/htfgw5bk/map-coloring-wp2.pdf
https://www.dwavesys.com/media/htfgw5bk/map-coloring-wp2.pdf
https://arxiv.org/abs/1207.4109
https://dwavesys.com/media/fawfas04/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://dwavesys.com/media/fawfas04/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://arxiv.org/abs/1207.4109
https://arxiv.org/abs/1207.4109
https://www.dwavesys.com/media/htfgw5bk/map-coloring-wp2.pdf
https://www.dwavesys.com/media/htfgw5bk/map-coloring-wp2.pdf
https://arxiv.org/abs/2003.00133

DWaveNetworkX Documentation, Release 0.8.13

[BRK] K. Boothby, J. Raymond and A. D. King (2021). Zephyr Topology of D-Wave Quantum Processors. https:
//dwavesys.com/media/fawfas04/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf

[RH] J. Raymond, R. Stevanovic, W. Bernoudy, K. Boothby, C. C. McGeoch, A. J. Berkley, P. Farré and A.
D. King (2021). Hybrid quantum annealing for larger-than-QPU lattice-structured problems. https:
//arxiv.org/abs/2202.03044

74 Bibliography

https://dwavesys.com/media/fawfas04/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://dwavesys.com/media/fawfas04/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://arxiv.org/abs/2202.03044
https://arxiv.org/abs/2202.03044

Python Module Index

a
dwave_networkx.algorithms.canonicalization,

8
dwave_networkx.algorithms.clique, 8
dwave_networkx.algorithms.coloring, 11
dwave_networkx.algorithms.cover, 14
dwave_networkx.algorithms.elimination_ordering,

17
dwave_networkx.algorithms.independent_set,

29
dwave_networkx.algorithms.markov, 23
dwave_networkx.algorithms.matching, 25
dwave_networkx.algorithms.max_cut, 27
dwave_networkx.algorithms.partition, 33
dwave_networkx.algorithms.social, 34
dwave_networkx.algorithms.tsp, 37

d
dwave_networkx, 59
dwave_networkx.default_sampler, 66
dwave_networkx.drawing.chimera_layout,

40
dwave_networkx.drawing.pegasus_layout,

41
dwave_networkx.drawing.zephyr_layout,

45

e
dwave_networkx.exceptions, 66

u
dwave_networkx.utils, 59
dwave_networkx.utils.decorators, 59

75

DWaveNetworkX Documentation, Release 0.8.13

76 Python Module Index

Index

B
binary_quadratic_model_sampler() (in mod-

ule dwave_networkx.utils.decorators), 59

C
canonical_chimera_labeling() (in module

dwave_networkx), 8
chimera_coordinates (class in dwave_networkx),

59
chimera_elimination_order() (in module

dwave_networkx.algorithms.elimination_ordering),
18

chimera_graph() (in module dwave_networkx), 49
chimera_layout() (in module

dwave_networkx.drawing.chimera_layout),
40

chimera_to_linear() (chimera_coordinates
method), 60

chimera_torus() (in module dwave_networkx), 56
clique_number() (in module dwave_networkx), 10

D
draw_chimera() (in module

dwave_networkx.drawing.chimera_layout),
40

draw_pegasus() (in module
dwave_networkx.drawing.pegasus_layout),
42

draw_pegasus_embedding() (in module
dwave_networkx.drawing.pegasus_layout),
43

draw_zephyr() (in module
dwave_networkx.drawing.zephyr_layout),
45

draw_zephyr_embedding() (in module
dwave_networkx.drawing.zephyr_layout),
46

draw_zephyr_yield() (in module
dwave_networkx.drawing.zephyr_layout),

47
dwave_networkx (module), 59
dwave_networkx.algorithms.canonicalization

(module), 8
dwave_networkx.algorithms.clique (mod-

ule), 8
dwave_networkx.algorithms.coloring (mod-

ule), 11
dwave_networkx.algorithms.cover (module),

14
dwave_networkx.algorithms.elimination_ordering

(module), 17
dwave_networkx.algorithms.independent_set

(module), 29
dwave_networkx.algorithms.markov (mod-

ule), 23
dwave_networkx.algorithms.matching (mod-

ule), 25
dwave_networkx.algorithms.max_cut (mod-

ule), 27
dwave_networkx.algorithms.partition

(module), 33
dwave_networkx.algorithms.social (mod-

ule), 34
dwave_networkx.algorithms.tsp (module), 37
dwave_networkx.default_sampler (module),

66
dwave_networkx.drawing.chimera_layout

(module), 40
dwave_networkx.drawing.pegasus_layout

(module), 41
dwave_networkx.drawing.zephyr_layout

(module), 45
dwave_networkx.exceptions (module), 66
dwave_networkx.utils (module), 59
dwave_networkx.utils.decorators (module),

59
DWaveNetworkXException, 66
DWaveNetworkXMissingSampler, 66

77

DWaveNetworkX Documentation, Release 0.8.13

E
elimination_order_width() (in module

dwave_networkx.algorithms.elimination_ordering),
18

F
find_chimera_indices() (in module

dwave_networkx), 61

G
get_default_sampler() (in module

dwave_networkx.default_sampler), 68
graph_to_linear() (zephyr_coordinates method),

64
graph_to_zephyr() (zephyr_coordinates method),

64

I
is_almost_simplicial() (in module

dwave_networkx.algorithms.elimination_ordering),
19

is_clique() (in module dwave_networkx), 10
is_independent_set() (in module

dwave_networkx), 32
is_simplicial() (in module

dwave_networkx.algorithms.elimination_ordering),
19

is_vertex_coloring() (in module
dwave_networkx.algorithms.coloring), 12

is_vertex_cover() (in module
dwave_networkx.algorithms.cover), 17

iter_linear_to_zephyr() (zephyr_coordinates
method), 64

iter_linear_to_zephyr_pairs()
(zephyr_coordinates method), 64

iter_zephyr_to_linear() (zephyr_coordinates
method), 64

iter_zephyr_to_linear_pairs()
(zephyr_coordinates method), 64

L
linear_to_chimera() (chimera_coordinates

method), 61
linear_to_nice() (pegasus_coordinates method),

62
linear_to_pegasus() (pegasus_coordinates

method), 62
linear_to_zephyr() (zephyr_coordinates method),

64

M
markov_network() (in module dwave_networkx), 58
markov_network_bqm() (in module

dwave_networkx.algorithms.markov), 24

matching_bqm() (in module
dwave_networkx.algorithms.matching), 25

max_cardinality_heuristic() (in module
dwave_networkx.algorithms.elimination_ordering),
20

maximal_matching_bqm() (in module
dwave_networkx.algorithms.matching), 25

maximum_clique() (in module dwave_networkx), 9
maximum_cut() (in module

dwave_networkx.algorithms.max_cut), 27
maximum_independent_set() (in module

dwave_networkx), 31
maximum_weighted_independent_set() (in

module dwave_networkx), 30
maximum_weighted_independent_set_qubo()

(in module dwave_networkx.algorithms.independent_set),
32

min_fill_heuristic() (in module
dwave_networkx.algorithms.elimination_ordering),
21

min_maximal_matching() (in module
dwave_networkx.algorithms.matching), 26

min_maximal_matching_bqm() (in module
dwave_networkx.algorithms.matching), 26

min_vertex_color() (in module
dwave_networkx.algorithms.coloring), 12

min_vertex_color_qubo() (in module
dwave_networkx.algorithms.coloring), 13

min_vertex_cover() (in module
dwave_networkx.algorithms.cover), 16

min_weighted_vertex_cover() (in module
dwave_networkx.algorithms.cover), 15

min_width_heuristic() (in module
dwave_networkx.algorithms.elimination_ordering),
21

minor_min_width() (in module
dwave_networkx.algorithms.elimination_ordering),
20

N
nice_to_linear() (pegasus_coordinates method),

62
nice_to_pegasus() (pegasus_coordinates static

method), 62

P
partition() (in module

dwave_networkx.algorithms.partition), 33
pegasus_coordinates (class in dwave_networkx),

60
pegasus_elimination_order() (in module

dwave_networkx.algorithms.elimination_ordering),
22

pegasus_graph() (in module dwave_networkx), 50

78 Index

DWaveNetworkX Documentation, Release 0.8.13

pegasus_layout() (in module
dwave_networkx.drawing.pegasus_layout),
43

pegasus_node_placer_2d() (in module
dwave_networkx.drawing.pegasus_layout),
44

pegasus_to_linear() (pegasus_coordinates
method), 63

pegasus_to_nice() (pegasus_coordinates static
method), 63

pegasus_torus() (in module dwave_networkx), 57

S
sample_markov_network() (in module

dwave_networkx.algorithms.markov), 23
set_default_sampler() (in module

dwave_networkx.default_sampler), 67
structural_imbalance() (in module

dwave_networkx.algorithms.social), 34
structural_imbalance_ising() (in module

dwave_networkx.algorithms.social), 36

T
traveling_salesperson() (in module

dwave_networkx.algorithms.tsp), 37
traveling_salesperson_qubo() (in module

dwave_networkx.algorithms.tsp), 39
treewidth_branch_and_bound() (in module

dwave_networkx.algorithms.elimination_ordering),
22

U
unset_default_sampler() (in module

dwave_networkx.default_sampler), 68

V
vertex_color() (in module

dwave_networkx.algorithms.coloring), 13
vertex_color_qubo() (in module

dwave_networkx.algorithms.coloring), 14

W
weighted_maximum_cut() (in module

dwave_networkx.algorithms.max_cut), 29

Z
zephyr_coordinates (class in dwave_networkx),

60
zephyr_graph() (in module dwave_networkx), 53
zephyr_layout() (in module

dwave_networkx.drawing.zephyr_layout),
47

zephyr_sublattice_mappings() (in module
dwave_networkx), 65

zephyr_to_linear() (zephyr_coordinates method),
65

zephyr_torus() (in module dwave_networkx), 57

Index 79

	Installation
	License
	Contributing
	Bibliography
	Python Module Index
	Index

