
dwavebinarycsp
Release 0.2.0

D-Wave Systems Inc

Apr 27, 2022

Contents

1 Documentation 3

2 Indices and tables 31

Python Module Index 33

Index 35

i

ii

dwavebinarycsp, Release 0.2.0

Library to construct a binary quadratic model from a constraint satisfaction problem with small constraints over binary
variables.

Below is an example usage:

import dwavebinarycsp
import dimod

csp = dwavebinarycsp.factories.random_2in4sat(8, 4) # 8 variables, 4 clauses

bqm = dwavebinarycsp.stitch(csp)

resp = dimod.ExactSolver().sample(bqm)

for sample, energy in resp.data(['sample', 'energy']):
print(sample, csp.check(sample), energy)

Contents 1

dwavebinarycsp, Release 0.2.0

2 Contents

CHAPTER 1

Documentation

Note: This documentation is for the latest version of dwavebinarycsp. Documentation for the version currently
installed by dwave-ocean-sdk is here: dwavebinarycsp.

1.1 Introduction

dwavebinarycsp is a library to construct a binary quadratic model from a constraint satisfaction problem (CSP) with
small constraints over binary variables (represented as either binary values {0, 1} or spin values {-1, 1}).

For an introduction to CSPs, see Constraints.

1.1.1 Example: Solving a Map-Coloring CSP

The map-coloring CSP, for example, is to assign a color to each region of a map such that any two regions sharing a
border have different colors.

The constraints for the map-coloring problem can be expressed as follows:

• Each region is assigned one color only, of 𝐶 possible colors.

• The color assigned to one region cannot be assigned to adjacent regions.

Solving such problems as the map-coloring CSP on a sampler such as the D-Wave system necessitates that the math-
ematical formulation use binary variables because the solution is implemented physically with qubits, and so must
translate to spins 𝑠𝑖 ∈ {−1,+1} or equivalent binary values 𝑥𝑖 ∈ {0, 1}. This means that in formulating the problem
by stating it mathematically, you might use unary encoding to represent the 𝐶 colors: each region is represented by 𝐶
variables, one for each possible color, which is set to value 1 if selected, while the remaining 𝐶 − 1 variables are 0.

This example finds a solution to the map-coloring problem for a map of Canada using four colors. Canada’s 13
provinces are denoted by postal codes:

3

https://github.com/dwavesystems/dwavebinarycsp
https://github.com/dwavesystems/dwave-ocean-sdk
https://docs.ocean.dwavesys.com/en/latest/docs_binarycsp/sdk_index.html
https://docs.ocean.dwavesys.com/en/latest/concepts/csp.html

dwavebinarycsp, Release 0.2.0

Fig. 1: Coloring a map of Canada with four colors.

Table 1: Canadian Provinces’ Postal Codes
Code Province Code Province
AB Alberta BC British Columbia
MB Manitoba NB New Brunswick
NL Newfoundland and Labrador NS Nova Scotia
NT Northwest Territories NU Nunavut
ON Ontario PE Prince Edward Island
QC Quebec SK Saskatchewan
YT Yukon

The workflow for solution is as follows:

1. Formulate the problem as a graph, with provinces represented as nodes and shared borders as edges, using 4
binary variables (one per color) for each province.

2. Create a binary constraint satisfaction problem and add all the needed constraints.

3. Convert to a binary quadratic model.

4. Sample.

5. Plot a valid solution, if such was found.

The following sample code creates a graph of the map with provinces as nodes and shared borders between provinces
as edges (e.g., “(‘AB’, ‘BC’)” is an edge representing the shared border between British Columbia and Alberta). It
creates a binary constraint satisfaction problem based on two types of constraints:

• csp.add_constraint(one_color_configurations, variables) represents the con-
straint that each node (province) select a single color, as represented by valid configurations
one_color_configurations = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1,
0, 0, 0)}

• csp.add_constraint(not_both_1, variables) represents the constraint that two nodes
(provinces) with a shared edge (border) not both select the same color.

import dwavebinarycsp
from dwave.system.samplers import DWaveSampler
from dwave.system.composites import EmbeddingComposite

(continues on next page)

4 Chapter 1. Documentation

dwavebinarycsp, Release 0.2.0

(continued from previous page)

import networkx as nx
import matplotlib.pyplot as plt

Represent the map as the nodes and edges of a graph
provinces = ['AB', 'BC', 'MB', 'NB', 'NL', 'NS', 'NT', 'NU', 'ON', 'PE', 'QC', 'SK',
→˓'YT']
neighbors = [('AB', 'BC'), ('AB', 'NT'), ('AB', 'SK'), ('BC', 'NT'), ('BC', 'YT'), (
→˓'MB', 'NU'),

('MB', 'ON'), ('MB', 'SK'), ('NB', 'NS'), ('NB', 'QC'), ('NL', 'QC'), (
→˓'NT', 'NU'),

('NT', 'SK'), ('NT', 'YT'), ('ON', 'QC')]

Function for the constraint that two nodes with a shared edge not both select one
→˓color
def not_both_1(v, u):

return not (v and u)

Function that plots a returned sample
def plot_map(sample):

G = nx.Graph()
G.add_nodes_from(provinces)
G.add_edges_from(neighbors)
Translate from binary to integer color representation
color_map = {}
for province in provinces:

for i in range(colors):
if sample[province+str(i)]:

color_map[province] = i
Plot the sample with color-coded nodes
node_colors = [color_map.get(node) for node in G.nodes()]
nx.draw_circular(G, with_labels=True, node_color=node_colors, node_size=3000,

→˓cmap=plt.cm.rainbow)
plt.show()

Valid configurations for the constraint that each node select a single color
one_color_configurations = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)}
colors = len(one_color_configurations)

Create a binary constraint satisfaction problem
csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)

Add constraint that each node (province) select a single color
for province in provinces:

variables = [province+str(i) for i in range(colors)]
csp.add_constraint(one_color_configurations, variables)

Add constraint that each pair of nodes with a shared edge not both select one color
for neighbor in neighbors:

v, u = neighbor
for i in range(colors):

variables = [v+str(i), u+str(i)]
csp.add_constraint(not_both_1, variables)

Convert the binary constraint satisfaction problem to a binary quadratic model
bqm = dwavebinarycsp.stitch(csp)

Set up a solver using the local system’s default D-Wave Cloud Client configuration
→˓file (continues on next page)

1.1. Introduction 5

dwavebinarycsp, Release 0.2.0

(continued from previous page)

and sample 50 times
sampler = EmbeddingComposite(DWaveSampler()) # doctest: +SKIP
response = sampler.sample(bqm, num_reads=50) # doctest: +SKIP

Plot the lowest-energy sample if it meets the constraints
sample = next(response.samples()) # doctest: +SKIP
if not csp.check(sample): # doctest: +SKIP

print("Failed to color map")
else:

plot_map(sample)

The plot shows a solution returned by the D-Wave solver. No provinces sharing a border have the same color.

Fig. 2: Solution for a map of Canada with four colors. The graph comprises 13 nodes representing provinces connected
by edges representing shared borders. No two nodes connected by an edge share a color.

1.2 Reference Documentation

Release 0.2.0

Date Apr 27, 2022

1.2.1 Defining Constraint Satisfaction Problems

Constraint satisfaction problems require that all a problem’s variables be assigned values, out of a finite domain, that
result in the satisfying of all constraints. The ConstraintSatisfactionProblem class aggregates all con-

6 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/latest/docs_binarycsp/reference/csp.html#dwavebinarycsp.ConstraintSatisfactionProblem

dwavebinarycsp, Release 0.2.0

straints and variables defined for a problem and provides functionality to assist in problem solution, such as verifying
whether a candidate solution satisfies the constraints.

Class

class ConstraintSatisfactionProblem(vartype)
A constraint satisfaction problem.

Parameters vartype (Vartype/str/set) – Variable type for the binary quadratic model. Sup-
ported values are:

• SPIN, 'SPIN', {-1, 1}

• BINARY, 'BINARY', {0, 1}

constraints
Constraints that together constitute the constraint satisfaction problem. Valid solutions satisfy all of the
constraints.

Type list[Constraint]

variables
Variables of the constraint satisfaction problem as a dict, where keys are the variables and values a list of
all of constraints associated with the variable.

Type dict[variable, list[Constraint]]

vartype
Enumeration of valid variable types. Supported values are SPIN or BINARY. If vartype is SPIN, variables
can be assigned -1 or 1; if BINARY, variables can be assigned 0 or 1.

Type dimod.Vartype

Example

This example creates a binary-valued constraint satisfaction problem, adds two constraints, 𝑎 = 𝑏 and 𝑏 ̸= 𝑐,
and tests 𝑎, 𝑏, 𝑐 = 1, 1, 0.

>>> import operator
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem('BINARY')
>>> csp.add_constraint(operator.eq, ['a', 'b'])
>>> csp.add_constraint(operator.ne, ['b', 'c'])
>>> csp.check({'a': 1, 'b': 1, 'c': 0})
True

Methods

Adding variables and constraints

ConstraintSatisfactionProblem.
add_constraint(. . .)

Add a constraint.

ConstraintSatisfactionProblem.
add_variable(v)

Add a variable.

1.2. Reference Documentation 7

https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.SPIN
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.BINARY
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.SPIN
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.BINARY
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype

dwavebinarycsp, Release 0.2.0

dwavebinarycsp.ConstraintSatisfactionProblem.add_constraint

ConstraintSatisfactionProblem.add_constraint(constraint, variables=())
Add a constraint.

Parameters

• constraint (function/iterable/Constraint) – Constraint definition in one of the sup-
ported formats:

1. Function, with input arguments matching the order and vartype type of the variables
argument, that evaluates True when the constraint is satisfied.

2. List explicitly specifying each allowed configuration as a tuple.

3. Constraint object built either explicitly or by dwavebinarycsp.factories.

• variables (iterable) – Variables associated with the constraint. Not required when
constraint is a Constraint object.

Examples

This example defines a function that evaluates True when the constraint is satisfied. The function’s input argu-
ments match the order and type of the variables argument.

>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> def all_equal(a, b, c): # works for both dwavebinarycsp.BINARY and
→˓dwavebinarycsp.SPIN
... return (a == b) and (b == c)
>>> csp.add_constraint(all_equal, ['a', 'b', 'c'])
>>> csp.check({'a': 0, 'b': 0, 'c': 0})
True
>>> csp.check({'a': 0, 'b': 0, 'c': 1})
False

This example explicitly lists allowed configurations.

>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.SPIN)
>>> eq_configurations = {(-1, -1), (1, 1)}
>>> csp.add_constraint(eq_configurations, ['v0', 'v1'])
>>> csp.check({'v0': -1, 'v1': +1})
False
>>> csp.check({'v0': -1, 'v1': -1})
True

This example uses a Constraint object built by dwavebinarycsp.factories.

>>> import dwavebinarycsp.factories.constraint.gates as gates
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(gates.and_gate(['a', 'b', 'c'])) # add an AND gate
>>> csp.add_constraint(gates.xor_gate(['a', 'c', 'd'])) # add an XOR gate
>>> csp.check({'a': 1, 'b': 0, 'c': 0, 'd': 1})
True

8 Chapter 1. Documentation

dwavebinarycsp, Release 0.2.0

dwavebinarycsp.ConstraintSatisfactionProblem.add_variable

ConstraintSatisfactionProblem.add_variable(v)
Add a variable.

Parameters v (variable) – Variable in the constraint satisfaction problem. May be of any type
that can be a dict key.

Examples

This example adds two variables, one of which is already used in a constraint of the constraint satisfaction
problem.

>>> import operator
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.SPIN)
>>> csp.add_constraint(operator.eq, ['a', 'b'])
>>> csp.add_variable('a') # does nothing, already added as part of the constraint
>>> csp.add_variable('c')
>>> csp.check({'a': -1, 'b': -1, 'c': 1})
True
>>> csp.check({'a': -1, 'b': -1, 'c': -1})
True

Satisfiability

ConstraintSatisfactionProblem.
check(solution)

Check that a solution satisfies all of the constraints.

dwavebinarycsp.ConstraintSatisfactionProblem.check

ConstraintSatisfactionProblem.check(solution)
Check that a solution satisfies all of the constraints.

Parameters solution (container) – An assignment of values for the variables in the con-
straint satisfaction problem.

Returns True if the solution satisfies all of the constraints; False otherwise.

Return type bool

Examples

This example creates a binary-valued constraint satisfaction problem, adds two logic gates implementing
Boolean constraints, 𝑐 = 𝑎 ∧ 𝑏 and 𝑑 = 𝑎 ⊕ 𝑐, and verifies that the combined problem is satisfied for a
given assignment.

>>> import dwavebinarycsp.factories.constraint.gates as gates
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(gates.and_gate(['a', 'b', 'c'])) # add an AND gate
>>> csp.add_constraint(gates.xor_gate(['a', 'c', 'd'])) # add an XOR gate
>>> csp.check({'a': 1, 'b': 0, 'c': 0, 'd': 1})
True

1.2. Reference Documentation 9

https://docs.python.org/3/library/functions.html#bool

dwavebinarycsp, Release 0.2.0

Transformations

ConstraintSatisfactionProblem.
fix_variable(v, . . .)

Fix the value of a variable and remove it from the con-
straint satisfaction problem.

dwavebinarycsp.ConstraintSatisfactionProblem.fix_variable

ConstraintSatisfactionProblem.fix_variable(v, value)
Fix the value of a variable and remove it from the constraint satisfaction problem.

Parameters

• v (variable) – Variable to be fixed in the constraint satisfaction problem.

• value (int) – Value assigned to the variable. Values must match the vartype of the
constraint satisfaction problem.

Examples

This example creates a spin-valued constraint satisfaction problem, adds two constraints, 𝑎 = 𝑏 and 𝑏 ̸= 𝑐, and
fixes variable b to +1.

>>> import operator
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.SPIN)
>>> csp.add_constraint(operator.eq, ['a', 'b'])
>>> csp.add_constraint(operator.ne, ['b', 'c'])
>>> csp.check({'a': +1, 'b': +1, 'c': -1})
True
>>> csp.check({'a': -1, 'b': -1, 'c': +1})
True
>>> csp.fix_variable('b', +1)
>>> csp.check({'a': +1, 'b': +1, 'c': -1}) # 'b' is ignored
True
>>> csp.check({'a': -1, 'b': -1, 'c': +1})
False
>>> csp.check({'a': +1, 'c': -1})
True
>>> csp.check({'a': -1, 'c': +1})
False

1.2.2 Converting to a Binary Quadratic Model

Constraint satisfaction problems can be converted to binary quadratic models to be solved on samplers such as the
D-Wave system.

Compilers

Compilers accept a constraint satisfaction problem and return a dimod.BinaryQuadraticModel.

10 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int
https://docs.ocean.dwavesys.com/en/latest/hidden.html#dimod.BinaryQuadraticModel

dwavebinarycsp, Release 0.2.0

stitch(csp[, min_classical_gap, max_graph_size]) Build a binary quadratic model with minimal energy
levels at solutions to the specified constraint satisfaction
problem.

dwavebinarycsp.stitch

stitch(csp, min_classical_gap=2.0, max_graph_size=8)
Build a binary quadratic model with minimal energy levels at solutions to the specified constraint satisfaction
problem.

Parameters

• csp (ConstraintSatisfactionProblem) – Constraint satisfaction problem.

• min_classical_gap (float, optional, default=2.0) – Minimum energy
gap from ground. Each constraint violated by the solution increases the energy level of
the binary quadratic model by at least this much relative to ground energy.

• max_graph_size (int, optional, default=8) – Maximum number of vari-
ables in the binary quadratic model that can be used to represent a single constraint.

Returns BinaryQuadraticModel

Notes

For a min_classical_gap > 2 or constraints with more than two variables, requires access to factories from the
penaltymodel ecosystem to construct the binary quadratic model.

Examples

This example creates a binary-valued constraint satisfaction problem with two constraints, 𝑎 = 𝑏 and 𝑏 ̸= 𝑐,
and builds a binary quadratic model such that each constraint violation by a solution adds the default minimum
energy gap.

>>> import operator
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(operator.eq, ['a', 'b']) # a == b
>>> csp.add_constraint(operator.ne, ['b', 'c']) # b != c
>>> bqm = dwavebinarycsp.stitch(csp)

Variable assignments that satisfy the CSP above, violate one, then two constraints, produce energy increases of
the default minimum classical gap:

>>> bqm.energy({'a': 0, 'b': 0, 'c': 1}) # doctest: +SKIP
-2.0
>>> bqm.energy({'a': 0, 'b': 0, 'c': 0}) # doctest: +SKIP
0.0
>>> bqm.energy({'a': 1, 'b': 0, 'c': 0}) # doctest: +SKIP
2.0

This example creates a binary-valued constraint satisfaction problem with two constraints, 𝑎 = 𝑏 and 𝑏 ̸= 𝑐, and
builds a binary quadratic model with a minimum energy gap of 4. Note that in this case the conversion to binary
quadratic model adds two ancillary variables that must be minimized over when solving.

1.2. Reference Documentation 11

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.ocean.dwavesys.com/en/latest/hidden.html#dimod.BinaryQuadraticModel
https://github.com/dwavesystems/penaltymodel

dwavebinarycsp, Release 0.2.0

>>> import operator
>>> import itertools
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(operator.eq, ['a', 'b']) # a == b
>>> csp.add_constraint(operator.ne, ['b', 'c']) # b != c
>>> bqm = dwavebinarycsp.stitch(csp, min_classical_gap=4.0)
>>> list(bqm) # doctest: +SKIP
['a', 'aux1', 'aux0', 'b', 'c']

Variable assignments that satisfy the CSP above, violate one, then two constraints, produce energy increases of
the specified minimum classical gap:

>>> min([bqm.energy({'a': 0, 'b': 0, 'c': 1, 'aux0': aux0, 'aux1': aux1}) for
... aux0, aux1 in list(itertools.product([0, 1], repeat=2))]) # doctest: +SKIP
-6.0
>>> min([bqm.energy({'a': 0, 'b': 0, 'c': 0, 'aux0': aux0, 'aux1': aux1}) for
... aux0, aux1 in list(itertools.product([0, 1], repeat=2))]) # doctest: +SKIP
-2.0
>>> min([bqm.energy({'a': 1, 'b': 0, 'c': 0, 'aux0': aux0, 'aux1': aux1}) for
... aux0, aux1 in list(itertools.product([0, 1], repeat=2))]) # doctest: +SKIP
2.0

This example finds for the previous example the minimum graph size.

>>> import operator
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(operator.eq, ['a', 'b']) # a == b
>>> csp.add_constraint(operator.ne, ['b', 'c']) # b != c
>>> for n in range(8, 1, -1):
... try:
... bqm = dwavebinarycsp.stitch(csp, min_classical_gap=4.0, max_graph_
→˓size=n)
... except dwavebinarycsp.exceptions.ImpossibleBQM:
... print(n+1)
...
3

1.2.3 Other CSP Formats

DIMACS

The DIMACS format is used to encode boolean satisfiability problems in conjunctive normal form.

CNF

load_cnf(fp) Load a constraint satisfaction problem from a .cnf file.

dwavebinarycsp.io.cnf.load_cnf

load_cnf(fp)
Load a constraint satisfaction problem from a .cnf file.

Parameters fp (file, optional) – .write()-supporting file object DIMACS CNF formatted

12 Chapter 1. Documentation

https://docs.python.org/3/glossary.html#term-file-object
http://www.satcompetition.org/2009/format-benchmarks2009.html

dwavebinarycsp, Release 0.2.0

file.

Returns ConstraintSatisfactionProblem a binary-valued SAT problem.

Examples

>>> import dwavebinarycsp as dbcsp
...
>>> with open('test.cnf', 'r') as fp: # doctest: +SKIP
... csp = dbcsp.cnf.load_cnf(fp)

1.2.4 Reducing Constraints

Constraints can sometimes be reduced into several smaller constraints.

Functions

irreducible_components(constraint) Determine the sets of variables that are irreducible.

dwavebinarycsp.irreducible_components

irreducible_components(constraint)
Determine the sets of variables that are irreducible.

Let V(C) denote the variables of constraint C. For a configuration x, let x|A denote the restriction of the config-
uration to the variables of A. Constraint C is reducible if there is a partition of V(C) into nonempty subsets A
and B, and two constraints C_A and C_B, with V(C_A) = A and C_B V(C_B) = B, such that a configuration x
is feasible in C if and only if x|A is feasible in C_A and x|B is feasible in C_B. A constraint is irreducible if it is
not reducible.

Parameters constraint (Constraint) – Constraint to attempt to reduce.

Returns List of tuples in which each tuple is a set of variables that is irreducible.

Return type list[tuple]

Examples

This example reduces a constraint, created by specifying its valid configurations, to two constraints. The original
constraint, that valid configurations for a,b,c are 0,0,1 and 1,1,1, can be represented by two reduced constraints,
for example, (c=1) & (a=b). For comparison, an attempt to reduce a constraint representing an AND gate fails
to find a valid reduction.

>>> const = dwavebinarycsp.Constraint.from_configurations([(0, 0, 1), (1, 1, 1)],
... ['a', 'b', 'c'],
→˓dwavebinarycsp.BINARY)
>>> dwavebinarycsp.irreducible_components(const)
[('c',), ('a', 'b')]
>>> const_and = dwavebinarycsp.Constraint.from_configurations([(0, 0, 0), (0, 1,
→˓0), (1, 0, 0), (1, 1, 1)],
... ['a', 'b', 'c'],
→˓dwavebinarycsp.BINARY)

(continues on next page)

1.2. Reference Documentation 13

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

dwavebinarycsp, Release 0.2.0

(continued from previous page)

>>> dwavebinarycsp.irreducible_components(const_and)
[('a', 'b', 'c')]

1.2.5 Defining Constraints

Solutions to a constraint satisfaction problem must satisfy certains conditions, the constraints of the problem, such as
equality and inequality constraints. The Constraint class defines constraints and provides functionality to assist in
constraint definition, such as verifying whether a candidate solution satisfies a constraint.

Class

class Constraint(func, configurations, variables, vartype, name=None)
A constraint.

variables
Variables associated with the constraint.

Type tuple

func
Function that returns True for configurations of variables that satisfy the constraint. Inputs to the function
are ordered by variables.

Type function

configurations
Valid configurations of the variables. Each configuration is a tuple of variable assignments ordered by
variables.

Type frozenset[tuple]

vartype
Variable type for the constraint. Accepted input values:

• SPIN, 'SPIN', {-1, 1}

• BINARY, 'BINARY', {0, 1}

Type dimod.Vartype

name
Name for the constraint. If not provided on construction, defaults to ‘Constraint’.

Type str

Examples

This example defines a constraint, named “plus1”, based on a function that is True for (𝑦1, 𝑦0) = (𝑥1, 𝑥0) + 1
on binary variables, and demonstrates some of the constraint’s functionality.

>>> def plus_one(y1, y0, x1, x0): # y=x++ for two bit binary numbers
... return (y1, y0, x1, x0) in [(0, 1, 0, 0), (1, 0, 0, 1), (1, 1, 1, 0)]
...
>>> const = dwavebinarycsp.Constraint.from_func(
... plus_one,

(continues on next page)

14 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/latest/docs_binarycsp/reference/constraint.html#dwavebinarycsp.Constraint
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.SPIN
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.BINARY
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype
https://docs.python.org/3/library/stdtypes.html#str

dwavebinarycsp, Release 0.2.0

(continued from previous page)

... ['out1', 'out0', 'in1', 'in0'],

... dwavebinarycsp.BINARY,

... name='plus1')
>>> print(const.name) # Check constraint defined as intended
plus1
>>> len(const)
4
>>> in0, in1, out0, out1 = 0, 0, 1, 0
>>> const.func(out1, out0, in1, in0) # Order matches variables
True

This example defines a constraint based on specified valid configurations that represents an AND gate for spin
variables, and demonstrates some of the constraint’s functionality.

>>> const = dwavebinarycsp.Constraint.from_configurations(
... [(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (1, 1, 1)],
... ['y', 'x1', 'x2'],
... dwavebinarycsp.SPIN)
>>> print(const.name) # Check constraint defined as intended
Constraint
>>> isinstance(const, dwavebinarycsp.core.constraint.Constraint)
True
>>> (-1, 1, -1) in const.configurations # Order matches variables: y,x1,x2
True

Methods

Construction

Constraint.from_configurations(. . . [,
name])

Construct a constraint from valid configurations.

Constraint.from_func(func, variables, vartype) Construct a constraint from a validation function.

dwavebinarycsp.Constraint.from_configurations

classmethod Constraint.from_configurations(configurations, variables, vartype,
name=None)

Construct a constraint from valid configurations.

Parameters

• configurations (iterable[tuple]) – Valid configurations of the variables. Each
configuration is a tuple of variable assignments ordered by variables.

• variables (iterable) – Iterable of variable labels.

• vartype (Vartype/str/set) – Variable type for the constraint. Accepted input values:

– SPIN, 'SPIN', {-1, 1}

– BINARY, 'BINARY', {0, 1}

• name (string, optional, default='Constraint') – Name for the con-
straint.

1.2. Reference Documentation 15

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.SPIN
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.BINARY

dwavebinarycsp, Release 0.2.0

Examples

This example creates a constraint that variables a and b are not equal.

>>> const = dwavebinarycsp.Constraint.from_configurations([(0, 1), (1, 0)],
... ['a', 'b'], dwavebinarycsp.BINARY)
>>> print(const.name)
Constraint
>>> (0, 0) in const.configurations # Order matches variables: a,b
False

This example creates a constraint based on specified valid configurations that represents an OR gate for spin
variables.

>>> const = dwavebinarycsp.Constraint.from_configurations(
... [(-1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)],
... ['y', 'x1', 'x2'],
... dwavebinarycsp.SPIN, name='or_spin')
>>> print(const.name)
or_spin
>>> (1, 1, -1) in const.configurations # Order matches variables: y,x1,x2
True

dwavebinarycsp.Constraint.from_func

classmethod Constraint.from_func(func, variables, vartype, name=None)
Construct a constraint from a validation function.

Parameters

• func (function) – Function that evaluates True when the variables satisfy the constraint.

• variables (iterable) – Iterable of variable labels.

• vartype (Vartype/str/set) – Variable type for the constraint. Accepted input values:

– SPIN, 'SPIN', {-1, 1}

– BINARY, 'BINARY', {0, 1}

• name (string, optional, default='Constraint') – Name for the con-
straint.

Examples

This example creates a constraint that binary variables a and b are not equal.

>>> import operator
>>> const = dwavebinarycsp.Constraint.from_func(operator.ne, ['a', 'b'], 'BINARY')
>>> print(const.name)
Constraint
>>> (0, 1) in const.configurations
True

This example creates a constraint that 𝑜𝑢𝑡 = 𝑁𝑂𝑇 (𝑥) for spin variables.

16 Chapter 1. Documentation

https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.SPIN
https://docs.ocean.dwavesys.com/en/latest/docs_dimod/reference/vartypes.html#dimod.Vartype.BINARY

dwavebinarycsp, Release 0.2.0

>>> def not_(y, x): # y=NOT(x) for spin variables
... return (y == -x)
...
>>> const = dwavebinarycsp.Constraint.from_func(
... not_,
... ['out', 'in'],
... {1, -1},
... name='not_spin')
>>> print(const.name)
not_spin
>>> (1, -1) in const.configurations
True

Satisfiability

Constraint.check(solution) Check that a solution satisfies the constraint.

dwavebinarycsp.Constraint.check

Constraint.check(solution)
Check that a solution satisfies the constraint.

Parameters solution (container) – An assignment for the variables in the constraint.

Returns True if the solution satisfies the constraint; otherwise False.

Return type bool

Examples

This example creates a constraint that 𝑎 ̸= 𝑏 on binary variables and tests it for two candidate solutions, with
additional unconstrained variable c.

>>> const = dwavebinarycsp.Constraint.from_configurations([(0, 1), (1, 0)],
... ['a', 'b'], dwavebinarycsp.BINARY)
>>> solution = {'a': 1, 'b': 1, 'c': 0}
>>> const.check(solution)
False
>>> solution = {'a': 1, 'b': 0, 'c': 0}
>>> const.check(solution)
True

Transformations

Constraint.fix_variable(v, value) Fix the value of a variable and remove it from the con-
straint.

Constraint.flip_variable(v) Flip a variable in the constraint.

1.2. Reference Documentation 17

https://docs.python.org/3/library/functions.html#bool

dwavebinarycsp, Release 0.2.0

dwavebinarycsp.Constraint.fix_variable

Constraint.fix_variable(v, value)
Fix the value of a variable and remove it from the constraint.

Parameters

• v (variable) – Variable in the constraint to be set to a constant value.

• val (int) – Value assigned to the variable. Values must match the Vartype of the con-
straint.

Examples

This example creates a constraint that 𝑎 ̸= 𝑏 on binary variables, fixes variable a to 0, and tests two candidate
solutions.

>>> const = dwavebinarycsp.Constraint.from_func(operator.ne,
... ['a', 'b'], dwavebinarycsp.BINARY)
>>> const.fix_variable('a', 0)
>>> const.check({'b': 1})
True
>>> const.check({'b': 0})
False

dwavebinarycsp.Constraint.flip_variable

Constraint.flip_variable(v)
Flip a variable in the constraint.

Parameters v (variable) – Variable in the constraint to take the complementary value of its
construction value.

Examples

This example creates a constraint that 𝑎 = 𝑏 on binary variables and flips variable a.

>>> const = dwavebinarycsp.Constraint.from_func(operator.eq,
... ['a', 'b'], dwavebinarycsp.BINARY)
>>> const.check({'a': 0, 'b': 0})
True
>>> const.flip_variable('a')
>>> const.check({'a': 1, 'b': 0})
True
>>> const.check({'a': 0, 'b': 0})
False

Copies and projections

Constraint.copy() Create a copy.
Continued on next page

18 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int

dwavebinarycsp, Release 0.2.0

Table 11 – continued from previous page
Constraint.projection(variables) Create a new constraint that is the projection onto a sub-

set of the variables.

dwavebinarycsp.Constraint.copy

Constraint.copy()
Create a copy.

Examples

This example copies constraint 𝑎 ̸= 𝑏 and tests a solution on the copied constraint.

>>> import operator
>>> const = dwavebinarycsp.Constraint.from_func(operator.ne,
... ['a', 'b'], 'BINARY')
>>> const2 = const.copy()
>>> const2 is const
False
>>> const2.check({'a': 1, 'b': 1})
False

dwavebinarycsp.Constraint.projection

Constraint.projection(variables)
Create a new constraint that is the projection onto a subset of the variables.

Parameters variables (iterable) – Subset of the constraint’s variables.

Returns A new constraint over a subset of the variables.

Return type Constraint

Examples

>>> const = dwavebinarycsp.Constraint.from_configurations([(0, 0), (0, 1)],
... ['a', 'b'],
... dwavebinarycsp.BINARY)
>>> proj = const.projection(['a'])
>>> proj.variables
('a',)
>>> proj.configurations
frozenset({(0,)})

1.2.6 Factories

dwavebinarycsp currently provides factories for constraints representing Boolean gates and satisfiability problems and
CSPs for circuits and satisfiability problems.

1.2. Reference Documentation 19

dwavebinarycsp, Release 0.2.0

Constraints

Gates

gates.and_gate(variables[, vartype, name]) AND gate.
gates.or_gate(variables[, vartype, name]) OR gate.
gates.xor_gate(variables[, vartype, name]) XOR gate.
gates.halfadder_gate(variables[, vartype,
name])

Half adder.

gates.fulladder_gate(variables[, vartype,
name])

Full adder.

dwavebinarycsp.factories.constraint.gates.and_gate

and_gate(variables, vartype=<Vartype.BINARY: frozenset({0, 1})>, name=’AND’)
AND gate.

Parameters

• variables (list) – Variable labels for the and gate as [in1, in2, out], where in1, in2 are
inputs and out the gate’s output.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• name (str, optional, default='AND') – Name for the constraint.

Returns Constraint that is satisfied when its variables are assigned values that match the valid states
of an AND gate.

Return type Constraint(Constraint)

Examples

>>> import dwavebinarycsp.factories.constraint.gates as gates
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(gates.and_gate(['a', 'b', 'c'], name='AND1'))
>>> csp.check({'a': 1, 'b': 0, 'c': 0})
True

dwavebinarycsp.factories.constraint.gates.or_gate

or_gate(variables, vartype=<Vartype.BINARY: frozenset({0, 1})>, name=’OR’)
OR gate.

Parameters

• variables (list) – Variable labels for the and gate as [in1, in2, out], where in1, in2 are
inputs and out the gate’s output.

20 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

dwavebinarycsp, Release 0.2.0

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• name (str, optional, default='OR') – Name for the constraint.

Returns Constraint that is satisfied when its variables are assigned values that match the valid states
of an OR gate.

Return type Constraint(Constraint)

Examples

>>> import dwavebinarycsp.factories.constraint.gates as gates
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.SPIN)
>>> csp.add_constraint(gates.or_gate(['x', 'y', 'z'], {-1,1}, name='OR1'))
>>> csp.check({'x': 1, 'y': -1, 'z': 1})
True

dwavebinarycsp.factories.constraint.gates.xor_gate

xor_gate(variables, vartype=<Vartype.BINARY: frozenset({0, 1})>, name=’XOR’)
XOR gate.

Parameters

• variables (list) – Variable labels for the and gate as [in1, in2, out], where in1, in2 are
inputs and out the gate’s output.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• name (str, optional, default='XOR') – Name for the constraint.

Returns Constraint that is satisfied when its variables are assigned values that match the valid states
of an XOR gate.

Return type Constraint(Constraint)

Examples

>>> import dwavebinarycsp.factories.constraint.gates as gates
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(gates.xor_gate(['x', 'y', 'z'], name='XOR1'))
>>> csp.check({'x': 1, 'y': 1, 'z': 1})
False

1.2. Reference Documentation 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

dwavebinarycsp, Release 0.2.0

dwavebinarycsp.factories.constraint.gates.halfadder_gate

halfadder_gate(variables, vartype=<Vartype.BINARY: frozenset({0, 1})>, name=’HALF_ADDER’)
Half adder.

Parameters

• variables (list) – Variable labels for the and gate as [in1, in2, sum, carry], where in1,
in2 are inputs to be added and sum and ‘carry’ the resultant outputs.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• name (str, optional, default='HALF_ADDER') – Name for the constraint.

Returns Constraint that is satisfied when its variables are assigned values that match the valid states
of a Boolean half adder.

Return type Constraint(Constraint)

Examples

>>> import dwavebinarycsp.factories.constraint.gates as gates
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(gates.halfadder_gate(['a', 'b', 'total', 'carry'], name=
→˓'HA1'))
>>> csp.check({'a': 1, 'b': 1, 'total': 0, 'carry': 1})
True

dwavebinarycsp.factories.constraint.gates.fulladder_gate

fulladder_gate(variables, vartype=<Vartype.BINARY: frozenset({0, 1})>, name=’FULL_ADDER’)
Full adder.

Parameters

• variables (list) – Variable labels for the and gate as [in1, in2, in3, sum, carry], where
in1, in2, in3 are inputs to be added and sum and ‘carry’ the resultant outputs.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• name (str, optional, default='FULL_ADDER') – Name for the constraint.

Returns Constraint that is satisfied when its variables are assigned values that match the valid states
of a Boolean full adder.

Return type Constraint(Constraint)

22 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

dwavebinarycsp, Release 0.2.0

Examples

>>> import dwavebinarycsp.factories.constraint.gates as gates
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(gates.fulladder_gate(['a', 'b', 'c_in', 'total', 'c_out'],
→˓name='FA1'))
>>> csp.check({'a': 1, 'b': 0, 'c_in': 1, 'total': 0, 'c_out': 1})
True

Satisfiability Problems

sat.sat2in4(pos[, neg, vartype, name]) Two-in-four (2-in-4) satisfiability.

dwavebinarycsp.factories.constraint.sat.sat2in4

sat2in4(pos, neg=(), vartype=<Vartype.BINARY: frozenset({0, 1})>, name=’2-in-4’)
Two-in-four (2-in-4) satisfiability.

Parameters

• pos (iterable) – Variable labels, as an iterable, for non-negated variables of the con-
straint. Exactly four variables are specified by pos and neg together.

• neg (tuple) – Variable labels, as an iterable, for negated variables of the constraint. Ex-
actly four variables are specified by pos and neg together.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• name (str, optional, default='2-in-4') – Name for the constraint.

Returns Constraint that is satisfied when its variables are assigned values that satisfy a two-in-four
satisfiability problem.

Return type Constraint(Constraint)

Examples

>>> import dwavebinarycsp.factories.constraint.sat as sat
>>> csp = dwavebinarycsp.ConstraintSatisfactionProblem(dwavebinarycsp.BINARY)
>>> csp.add_constraint(sat.sat2in4(['w', 'x', 'y', 'z'], vartype='BINARY', name=
→˓'sat1'))
>>> csp.check({'w': 1, 'x': 1, 'y': 0, 'z': 0})
True

CSPs

1.2. Reference Documentation 23

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str

dwavebinarycsp, Release 0.2.0

circuits.multiplication_circuit(nbit[,
vartype])

Multiplication circuit constraint satisfaction problem.

sat.random_2in4sat(num_variables,
num_clauses)

Random two-in-four (2-in-4) constraint satisfaction
problem.

sat.random_xorsat(num_variables,
num_clauses)

Random XOR constraint satisfaction problem.

dwavebinarycsp.factories.csp.circuits.multiplication_circuit

multiplication_circuit(nbit, vartype=<Vartype.BINARY: frozenset({0, 1})>)
Multiplication circuit constraint satisfaction problem.

A constraint satisfaction problem that represents the binary multiplication 𝑎𝑏 = 𝑝, where the multiplicands are
binary variables of length nbit; for example, 2𝑚𝑎𝑛𝑏𝑖𝑡 + ...+ 4𝑎2 + 2𝑎1 + 𝑎0.

The square below shows a graphic representation of the circuit:

__
| and20 and10 and00 |
and21 add11 and11 add01 and01					
and22 add12 and12 add02 and02					
add13 add03					
p5 p4 p3 p2 p1 p0					
--

Parameters

• nbit (int) – Number of bits in the multiplicands.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

Returns CSP that is satisfied when variables 𝑎, 𝑏, 𝑝 are assigned values that correctly solve binary
multiplication 𝑎𝑏 = 𝑝.

Return type CSP (ConstraintSatisfactionProblem)

Examples

This example creates a multiplication circuit CSP that multiplies two 3-bit numbers, which is then formulated as
a binary quadratic model (BQM). It fixes the multiplacands as 𝑎 = 5, 𝑏 = 3 (101 and 011) and uses a simulated
annealing sampler to find the product, 𝑝 = 15 (001111).

>>> from dwavebinarycsp.factories.csp.circuits import multiplication_circuit
>>> import neal
>>> csp = multiplication_circuit(3)
>>> bqm = dwavebinarycsp.stitch(csp)
>>> bqm.fix_variable('a0', 1); bqm.fix_variable('a1', 0); bqm.fix_variable('a2',
→˓1)

(continues on next page)

24 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#int

dwavebinarycsp, Release 0.2.0

(continued from previous page)

>>> bqm.fix_variable('b0', 1); bqm.fix_variable('b1', 1); bqm.fix_variable('b2',
→˓0)
>>> sampler = neal.SimulatedAnnealingSampler()
>>> response = sampler.sample(bqm)
>>> p = next(response.samples(n=1, sorted_by='energy'))
>>> print(p['p5'], p['p4'], p['p3'], p['p2'], p['p1'], p['p0']) # doctest:
→˓+SKIP
0 0 1 1 1 1

dwavebinarycsp.factories.csp.sat.random_2in4sat

random_2in4sat(num_variables, num_clauses, vartype=<Vartype.BINARY: frozenset({0, 1})>, satisfi-
able=True)

Random two-in-four (2-in-4) constraint satisfaction problem.

Parameters

• num_variables (integer) – Number of variables (at least four).

• num_clauses (integer) – Number of constraints that together constitute the constraint
satisfaction problem.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• satisfiable (bool, optional, default=True) – True if the CSP can be sat-
isfied.

Returns CSP that is satisfied when its variables are assigned values that satisfy a two-in-four satis-
fiability problem.

Return type CSP (ConstraintSatisfactionProblem)

Examples

This example creates a CSP with 6 variables and two random constraints and checks whether a particular as-
signment of variables satisifies it.

>>> import dwavebinarycsp.factories as sat
>>> csp = sat.random_2in4sat(6, 2)
>>> csp.constraints # doctest: +SKIP
[Constraint.from_configurations(frozenset({(1, 0, 1, 0), (1, 0, 0, 1), (1, 1, 1,
→˓1), (0, 1, 1, 0), (0, 0, 0, 0),
(0, 1, 0, 1)}), (2, 4, 0, 1), Vartype.BINARY, name='2-in-4'),
Constraint.from_configurations(frozenset({(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1,
→˓0), (0, 0, 0, 1),
(0, 1, 0, 0), (0, 0, 1, 0)}), (1, 2, 4, 5), Vartype.BINARY, name='2-in-4')]
>>> csp.check({0: 1, 1: 0, 2: 1, 3: 1, 4: 0, 5: 0}) # doctest: +SKIP
True

1.2. Reference Documentation 25

https://docs.python.org/3/library/functions.html#bool

dwavebinarycsp, Release 0.2.0

dwavebinarycsp.factories.csp.sat.random_xorsat

random_xorsat(num_variables, num_clauses, vartype=<Vartype.BINARY: frozenset({0, 1})>, satisfi-
able=True)

Random XOR constraint satisfaction problem.

Parameters

• num_variables (integer) – Number of variables (at least three).

• num_clauses (integer) – Number of constraints that together constitute the constraint
satisfaction problem.

• vartype (Vartype, optional, default='BINARY') – Variable type. Accepted
input values:

– Vartype.SPIN, ‘SPIN’, {-1, 1}

– Vartype.BINARY, ‘BINARY’, {0, 1}

• satisfiable (bool, optional, default=True) – True if the CSP can be sat-
isfied.

Returns CSP that is satisfied when its variables are assigned values that satisfy a XOR satisfiability
problem.

Return type CSP (ConstraintSatisfactionProblem)

Examples

This example creates a CSP with 5 variables and two random constraints and checks whether a particular as-
signment of variables satisifies it.

>>> import dwavebinarycsp.factories as sat
>>> csp = sat.random_xorsat(5, 2)
>>> csp.constraints # doctest: +SKIP
[Constraint.from_configurations(frozenset({(1, 0, 0), (1, 1, 1), (0, 1, 0), (0, 0,
→˓ 1)}), (4, 3, 0),
Vartype.BINARY, name='XOR (0 flipped)'),
Constraint.from_configurations(frozenset({(1, 1, 0), (0, 1, 1), (0, 0, 0), (1, 0,
→˓ 1)}), (2, 0, 4),
Vartype.BINARY, name='XOR (2 flipped) (0 flipped)')]
>>> csp.check({0: 1, 1: 0, 2: 0, 3: 1, 4: 1}) # doctest: +SKIP
True

1.3 Bibliography

1.4 Installation

To install:

pip install dwavebinarycsp

To build from source:

26 Chapter 1. Documentation

https://docs.python.org/3/library/functions.html#bool

dwavebinarycsp, Release 0.2.0

pip install -r requirements.txt
python setup.py install

1.5 License

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable

1.5. License 27

http://www.apache.org/licenses/

dwavebinarycsp, Release 0.2.0

copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining

28 Chapter 1. Documentation

dwavebinarycsp, Release 0.2.0

the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

1.5. License 29

http://www.apache.org/licenses/LICENSE-2.0

dwavebinarycsp, Release 0.2.0

30 Chapter 1. Documentation

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

• Glossary

31

https://docs.ocean.dwavesys.com/en/latest/concepts/index.html

dwavebinarycsp, Release 0.2.0

32 Chapter 2. Indices and tables

Python Module Index

c
dwavebinarycsp.core.constraint, 14
dwavebinarycsp.core.csp, 6

f
dwavebinarycsp.factories.constraint, 20
dwavebinarycsp.factories.csp, 23

i
dwavebinarycsp.io.cnf, 12

r
dwavebinarycsp.reduction, 13

33

dwavebinarycsp, Release 0.2.0

34 Python Module Index

Index

A
add_constraint() (ConstraintSatisfactionProblem

method), 8
add_variable() (ConstraintSatisfactionProblem

method), 9
and_gate() (in module dwavebina-

rycsp.factories.constraint.gates), 20

C
check() (Constraint method), 17
check() (ConstraintSatisfactionProblem method), 9
configurations (Constraint attribute), 14
Constraint (class in dwavebinarycsp), 14
constraints (ConstraintSatisfactionProblem at-

tribute), 7
ConstraintSatisfactionProblem (class in

dwavebinarycsp), 7
copy() (Constraint method), 19

D
dwavebinarycsp.core.constraint (module),

14
dwavebinarycsp.core.csp (module), 6
dwavebinarycsp.factories.constraint

(module), 20
dwavebinarycsp.factories.csp (module), 23
dwavebinarycsp.io.cnf (module), 12
dwavebinarycsp.reduction (module), 13

F
fix_variable() (Constraint method), 18
fix_variable() (ConstraintSatisfactionProblem

method), 10
flip_variable() (Constraint method), 18
from_configurations() (dwavebina-

rycsp.Constraint class method), 15
from_func() (dwavebinarycsp.Constraint class

method), 16

fulladder_gate() (in module dwavebina-
rycsp.factories.constraint.gates), 22

func (Constraint attribute), 14

H
halfadder_gate() (in module dwavebina-

rycsp.factories.constraint.gates), 22

I
irreducible_components() (in module dwavebi-

narycsp), 13

L
load_cnf() (in module dwavebinarycsp.io.cnf), 12

M
multiplication_circuit() (in module dwavebi-

narycsp.factories.csp.circuits), 24

N
name (Constraint attribute), 14

O
or_gate() (in module dwavebina-

rycsp.factories.constraint.gates), 20

P
projection() (Constraint method), 19

R
random_2in4sat() (in module dwavebina-

rycsp.factories.csp.sat), 25
random_xorsat() (in module dwavebina-

rycsp.factories.csp.sat), 26

S
sat2in4() (in module dwavebina-

rycsp.factories.constraint.sat), 23

35

dwavebinarycsp, Release 0.2.0

stitch() (in module dwavebinarycsp), 11

V
variables (Constraint attribute), 14
variables (ConstraintSatisfactionProblem attribute),

7
vartype (Constraint attribute), 14
vartype (ConstraintSatisfactionProblem attribute), 7

X
xor_gate() (in module dwavebina-

rycsp.factories.constraint.gates), 21

36 Index

	Documentation
	Indices and tables
	Python Module Index
	Index

