dimod.SampleSet.from_samples#
- classmethod SampleSet.from_samples(samples_like, vartype, energy, info=None, num_occurrences=None, aggregate_samples=False, sort_labels=True, **vectors)[source]#
Build a
SampleSet
from raw samples.- Parameters:
samples_like – A collection of raw samples. ‘samples_like’ is an extension of NumPy’s array_like. See
as_samples()
.vartype (
Vartype
/str/set) –Variable type for the
SampleSet
. Accepted input values:Vartype.SPIN
,'SPIN'
,{-1, 1}
Vartype.BINARY
,'BINARY'
,{0, 1}
ExtendedVartype.DISCRETE
,'DISCRETE'
energy (array_like) – Vector of energies.
info (dict, optional) – Information about the
SampleSet
as a whole formatted as a dict.num_occurrences (array_like, optional) – Number of occurrences for each sample. If not provided, defaults to a vector of 1s.
aggregate_samples (bool, optional, default=False) – If True, all samples in returned
SampleSet
are unique, with num_occurrences accounting for any duplicate samples in samples_like.sort_labels (bool, optional, default=True) – Return
SampleSet.variables
in sorted order. For mixed (unsortable) types, the given order is maintained.**vectors (array_like) – Other per-sample data.
- Returns:
Examples
This example creates a SampleSet out of a samples_like object (a dict).
>>> import numpy as np ... >>> sampleset = dimod.SampleSet.from_samples( ... dimod.as_samples({'a': 0, 'b': 1, 'c': 0}), 'BINARY', 0) >>> sampleset.variables Variables(['a', 'b', 'c'])